Python数据结构与算法——顺序表

简介: 概念在程序中,经常需要将一组(通常为同一个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录它们,传进传出函数等(例如,Python中的列表)。

概念

在程序中,经常需要将一组(通常为同一个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录它们,传进传出函数等(例如,Python中的列表)。一组数据中包含的元素个数可能发生变化(可以增加或者删除元素)。

对于元素增删改查的需求,最简单的解决办法就是将这一组元素当做一个序列,用元素序列里的位置和顺序,表示实际应用中的某种有意义的信息,或者表示数据之间的某种关系。

这样的一组序列元素的组织形式,即可抽象为线性表,一个线性表是某类元素的一个集合,还记录着元素之间的一种顺序关系。线性表是最基本的数据结构之一。

根据线性表的实际存储方式,分为两种实现模型:

  • 顺序表:将元素顺序地存放在一块连续的存储区里,元素间的顺序关系由它们的存储顺序自然表示

  • 链表: 将元素存放再通过链接构造起来的一系列存储块中

顺序表的基本形式

数据元素本身连续存储,每个元素所占的存储单元大小相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址加上逻辑地址与存储单元大小的乘积计算而得

  • 即: L0c(i) = L0 + i * c

  • 作图解释为下:

img_34e337f6fcb11962aa3983b98a98fda2.png
1_note_shunxubiao.png
  • 32位操作系统中,一个整型占用4个字节(Byte),因此列表my_list中四个整型占用字节数为16个字节,且每个元素所占用字节数相同

所以访问指定元素时无需从头遍历,通过计算便可获得对应地址,其时间复杂度为O(1).

顺序表的基本形式的特殊形式

如果元素的大小不统一,则须采用元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。此时公式中的 c 则不再是数据元素大小,而是存储一个链接地址所需的存储量。

顺序表的结构

  • 不考虑用Python语言具体实现,真正实现数据表结构的时候,怎么构造数据
img_59b7a9e071e9446f40f615ee54833fdf.png
2_note_顺序表的结构.png
  • 出了存储数据的数据区之外,往往还会加上表头信息

  • 表头信息即:上图中上面的部分

  • 下面部分为数据区 (连续的存储空间,内存的概念见后面的图解)

  • 构造一个数据表的时候,首先要预估数据需要多少的空间,指明数据存储所需空间,即数据区。如上图中所示,即为8个数据。那么就要向计算机申请8个空间,在表头指明

一个顺序表的完整信息包括两部分,一部分是表中的元素集合,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,这部分信息主要包括元素存储去的容量和当前表中已有的元素个数两项。

顺序表的两种基本实现方式

  • 一体式结构:
img_c1923d4426efed99191920fc3b23af6c.png
3_note_顺序表的两种实现方式一.png

一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象,这种结构整体性强,易于管理。

由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就固定了

  • 分离式结构:
img_be51507eecce50e0236026d256d13165.png
4_note_顺序表的两种实现方式二.png

分离式结构,表对象里只保存与整个表有关的信息(容量个元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。

元素存储区替换

一体式结构由于顺序表信息区与数据区连续存储在一起,所以想要更换数据区,就只能整体搬迁,即整个顺序表对象(存储顺序表的结构信息的区域)改变了。

分离式结构想要更换数据区,只需要将表信息区中的数据区链接地址更新即可,而该顺序表对象不变。

元素存储区扩充

采用分离式结构的顺序表,若将数据区更换为存储空间更大的区域,则可以在不改变表对象的前提下对其数据存储区进行了扩充,所有使用这个表的地方都不必修改。只要程序的运行环境还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。此种顺序表被称为动态顺序表,因为其容量可以在使用中动态变化。

  • 扩充的两种策略

  • 每次扩充增加固定数目的存储位置,如每次扩充增加8个元素位置,这种策略称为线性增长

  • 每次扩充容量加倍,如每次扩充增加一倍存储空间。

特点: 减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式。


补充:

内存:

img_c564908f949b883765606b60f34db786.png
5_内存.png

思维导图

img_13f792812d37c3830942478570aec18b.png
6_顺序表思维导图.png

顺序表的操作

增加元素

img_562dc50b71b190a97204104db633680d.png
7_顺序表的操作.png
  1. 尾端加入元素,如图所示,直接在顺序表的元素末尾加上元素,其时间复杂度为O(1)

  2. 保序的加入元素,如图所示,将增加的元素50,放在索引为1的位置,则对应的其他元素则分别向后移动,此为保序,没有破坏增加元素之前的元素顺序,但因会让增加元素所在位置之后的元素都产生移动,其时间复杂度为O(n)

  3. 非保序的加入元素,其时间复杂度为O(1),由于其会破坏顺序表原有的元素顺序,因此不常用

删除元素

img_ae2e67b7496ba89ca2f074705c70f228.png
8_顺序表的操作_删除元素.png

)

  1. 删除表尾的元素,其时间复杂度为O(1)

  2. 保序的元素删除,时间复杂度为O(n)

  3. 非保序的元素删除,时间复杂度为O(1)

Python 中的顺序表

Python 中的list和tuple两种类型采用了顺序表的实现技术

  • tuple 是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似

list 的基本实现技术

Python 标准类型list 就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征:

  • 基于下标(位置) 的高效元素访问和更新,时间复杂度是O(1); 为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。

  • 允许任意加入元素,而且在不断加入元素的过程中,表对象的标识不变;为满足该特征,必须能更换元素存储区,并且为保证更换存储区时list对象的标识不变,只能采用分离式实现技术。

在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。因此,使用list.append()加入元素比在指定位置插入元素效率高。


重点总结:

在Python的官方实现中,list实现采用了下面的策略,在建立空表时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert和append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已经很大(目前的阈值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式是为了避免出现过多空闲的存储位置。


作者:techLee
个人博客地址:www.limiao.tech

原创文章,转载请告知

目录
相关文章
|
2天前
|
算法 程序员 图形学
脑洞大开!Python并查集:用最简单的方式,解决最复杂的数据结构问题!
【7月更文挑战第17天】并查集,数据结构明星,处理不相交集合合并与查询。Python实现核心操作:查找与合并。路径压缩优化查找,按秩合并保持平衡。实战应用如图连通性判断,算法竞赛利器。掌握并查集,解锁复杂问题简单解法,照亮编程之旅!
18 10
|
1天前
|
存储 Python
震惊!Python并查集:解锁数据结构新姿势,让你从菜鸟秒变大神!
【7月更文挑战第18天】并查集,一种处理不相交集合的树形数据结构,支持Union(合并)和Find(查询)操作。Python实现中,用字典存储元素及其父节点,初始时每个元素为根。通过路径压缩提高效率。应用包括网络连通性判断、动态连通性检测和集合操作。掌握并查集,提升编程技能,解决复杂问题。开始探索,成为数据结构大师!
|
1天前
|
Python
逆天改命!掌握Python并查集,数据结构难题从此不再是你的痛!
【7月更文挑战第18天】并查集,一种神器数据结构,用于处理不相交集合合并与查询,解决网络连通性等难题。Python实现常通过记录元素父节点
13 4
|
1天前
|
算法 IDE 测试技术
Python中算法错误
【7月更文挑战第17天】
12 4
|
2天前
|
算法 数据挖掘 计算机视觉
Python并查集实战宝典:从入门到精通,让你的数据结构技能无懈可击!
【7月更文挑战第17天】并查集,如同瑞士军刀,是解决元素分组问题的利器,应用于好友关系、像素聚类、碰撞检测和连通性分析等场景。本文从基础到实战,介绍并查集的初始化、查找与路径压缩、按秩合并,以及在Kruskal算法中的应用。通过并查集,实现高效动态集合操作,对比哈希表和平衡树,其在合并与查找上的性能尤为突出。学习并查集,提升算法解决复杂问题的能力。
|
2天前
|
存储 算法 程序员
庆祝吧!掌握Python并查集,数据结构难题将不再是你的拦路虎!
【7月更文挑战第17天】并查集,一种数据结构,用于不相交集合的合并与查询,尤其适合解决图的连通性问题。通过Python实现,使用列表存储元素的父节点以判断集合关系。基本操作包括查找(确定元素集合)和合并(组合集合)。示例展示了如何用并查集配合Kruskal算法构建最小生成树。掌握并查集能高效处理复杂问题,优化后的查找和合并操作接近O(1)复杂度,是解决算法挑战的利器。
|
1天前
|
算法 计算机视觉 Python
Python并查集大揭秘:让你在算法界呼风唤雨,秒杀一切复杂场景!
【7月更文挑战第18天】并查集是Python中解决集合动态合并与查询的利器,常用于复杂问题。例如,在社交网络中快速判断用户是否在同一朋友圈,通过路径压缩优化的`UnionFind`类实现。另外,计算图像中岛屿数量也可借助并查集,将相邻像素合并成集合。并查集的应用显示了其在算法中的高效和灵活性,是提升编程技能的关键工具。
8 2
|
1天前
|
并行计算 算法 Python
Dantzig-Wolfe分解算法解释与Python代码示例
Dantzig-Wolfe分解算法解释与Python代码示例
|
2天前
|
存储 算法 Python
火箭般的提升!学会Python并查集,让你的算法能力飞跃新高度!
【7月更文挑战第17天】并查集,高效解决集合合并查询问题,常用于图的连通性判断。Python实现关键包含查找和合并操作。初始化时,元素各自为集合。查找使用路径压缩优化,合并则可选按秩策略保持平衡。例如,检测无向图环路,遍历边,若并查集发现边两端已在同一集合,则存在环。掌握并查集,提升算法能力,助你在问题解决中一飞冲天!动手实践,成为算法达人!
11 2
|
6天前
|
搜索推荐 C++ Python
Python排序算法大PK:归并VS快速,谁才是你的效率之选?
【7月更文挑战第13天】归并排序** 使用分治法,稳定且平均时间复杂度O(n log n),适合保持元素顺序和并行处理。
14 5

热门文章

最新文章