R-loop数据分析之R-ChIP(样本间BAM比较和可视化)

简介: 样本间相关性评估上一步得到各个样本的BAM文件之后,就可以在全基因组范围上看看这几个样本之间是否有差异。也就是先将基因组分成N个区间,然后用统计每个区间上比对上的read数。

样本间相关性评估

上一步得到各个样本的BAM文件之后,就可以在全基因组范围上看看这几个样本之间是否有差异。也就是先将基因组分成N个区间,然后用统计每个区间上比对上的read数。

脚本scripts/07.genome_bin_read_coverage.sh如下

#!/bin/bash

set -e
set -u
set -o pipefail

samples=${1?missing sample file}
chromsize=${2:-index/hg19.chrom.sizes}
size=${3:-3000}
ALIGN_DIR="analysis/2-read-align"
COV_DIR="analysis/3-genome-coverage"

mkdir -p ${COV_DIR}

exec 0< $samples

while read sample
do
    bedtools makewindows -g $chromsize -w $size | \
      bedtools intersect -b ${ALIGN_DIR}/${sample}.flt.bam -a - -c -bed > ${COV_DIR}/${sample}.ReadsCoverage
done

准备一个输入文件存放待处理样本的前缀,然后运行脚本bash scripts/07.genome_bin_read_coverage.sh samples_rep.txt

HKE293-D210N-Input-Rep1
HKE293-D210N-Input-Rep2
HKE293-D210N-Input-Rep3
HKE293-D210N-V5ChIP-Rep1
HKE293-D210N-V5ChIP-Rep2
HKE293-D210N-V5ChIP-Rep3

最后将得到的文件导入到R语言中进行作图,使用的是基础绘图系统的光滑散点图(smoothScatter)。

files_list <- list.files("r-chip/analysis/3-genome-coverage","ReadsCoverage")
files_path <- file.path("r-chip/analysis/3-genome-coverage",files_list)

input_rep1 <- read.table(files_path[1], sep='\t')
input_rep2 <- read.table(files_path[2], sep='\t')
input_rep3 <- read.table(files_path[3], sep='\t')
chip_rep1 <- read.table(files_path[4], sep='\t')
chip_rep2 <- read.table(files_path[5], sep='\t')
chip_rep3 <- read.table(files_path[6], sep='\t')

pw_plot <- function(x, y, 
                    xlab="x",
                    ylab="y", ...){
  log2x <- log2(x)
  log2y <- log2(y)
  smoothScatter(log2x,log2y,
                cex=1.2,
                xlim=c(0,12),ylim=c(0,12),
                xlab=xlab,
                ylab=ylab)
  text(3,10,paste("R = ",round(cor(x,y),2),sep=""))
}

par(mfrow=c(2,3))
pw_plot(chip_rep1[,4], chip_rep2[,4],
        xlab = "Rep 1 (Log2 Tag Counts)",
        ylab = "Rep 2 (Log2 Tag Counts)")

pw_plot(chip_rep1[,4], chip_rep3[,4],
        xlab = "Rep 1 (Log2 Tag Counts)",
        ylab = "Rep 2 (Log2 Tag Counts)")

pw_plot(chip_rep2[,4], chip_rep3[,4],
        xlab = "Rep 1 (Log2 Tag Counts)",
        ylab = "Rep 2 (Log2 Tag Counts)")

pw_plot(input_rep1[,4], input_rep2[,4],
        xlab = "Rep 1 (Log2 Tag Counts)",
        ylab = "Rep 2 (Log2 Tag Counts)")

pw_plot(input_rep1[,4], input_rep3[,4],
        xlab = "Rep 1 (Log2 Tag Counts)",
        ylab = "Rep 3 (Log2 Tag Counts)")

pw_plot(input_rep2[,4], input_rep3[,4],
        xlab = "Rep 2 (Log2 Tag Counts)",
        ylab = "Rep 3 (Log2 Tag Counts)")
img_c61437c8226f0eabf60a169416d27c73.jpe
correlationship

这种多个BAM文件之间相关性衡量,其实也可以用deepToolsplotCorrelation画出来,但是我觉得应该没有R语言画 的好看。

BigWig可视化

由于同一个样本间的BAM文件具有很强的相关性,因此可以将这些样本合并起来转换成bigwig格式,这样子在基因组浏览器(例如IGV, UCSC Browser, JBrowse)上方便展示。

如下的代码的目的就是先合并BAM,然后转换成BigWig,拆分成正链和反链进行保存

#!/bin/bash

set -e
set -u
set -o pipefail

samples=${1?please provied sample file}
threads=${2-8}
bs=${3-50}

ALIGN_DIR="analysis/2-read-align"
BW_DIR="analysis/4-normliazed-bw"

mkdir -p $BW_DIR

exec 0< $samples
cd $ALIGN_DIR

while read sample
do
    bams=$(ls ${sample}*flt.bam | tr '\n' ' ')
    if [ ! -f ../$(basename ${BW_DIR})/${sample}.tmp.bam ]; then
    echo "samtools merge -f -@ ${threads} ../$(basename ${BW_DIR})/${sample}.tmp.bam $bams  &&
          samtools index ../$(basename ${BW_DIR})/${sample}.tmp.bam" | bash
    fi
done

cd ../../
exec 0< $samples

cd ${BW_DIR}
while read sample
do
    bamCoverage -b ${sample}.tmp.bam -o ${sample}_fwd.bw -of bigwig  \
      --filterRNAstrand forward --binSize ${bs} --normalizeUsing CPM --effectiveGenomeSize 2864785220 \
      --extendReads 150 -p ${threads} 2> ../log/${sample}_fwd.log
    bamCoverage -b ${sample}.tmp.bam -o ${sample}_rvs.bw -of bigwig  \
      --filterRNAstrand reverse --binSize ${bs} --normalizeUsing CPM --effectiveGenomeSize 2864785220 \
      --extendReads 150 -p ${threads} 2> ../log/${sample}_rvs.log
    rm -f ${sample}.tmp.bam ${sample}.tmp.bam.bai
done

得到的BW文件你可以在IGV上初步看看,比如说检查下文章Figure 1(E)提到的CIRH1A基因

img_d63d0e2b348f70e6bae8ea933e41516d.jpe
CIRH1A

发表文章时肯定不能用上图,我们可以用R的Gviz进行展示下

library(Gviz)

#下面将scale等track写入tracklist
tracklist<-list()
itrack <- IdeogramTrack(genome = "hg19", chromosome = 'chr16',outline=T)
tracklist[["itrack"]]<-itrack

# 读取BigWig
bw_file_path <- "C:/Users/DELL/Desktop/FigureYa/R-ChIP/"
bw_file_names <- list.files(bw_file_path, "*.bw")
bw_files <- file.path("C:/Users/DELL/Desktop/FigureYa/R-ChIP/",
                      bw_file_names)

tracklist[['D210-fwd']] <- DataTrack(range = bw_files[3],
                              genome="hg19",
                              type="histogram",
                              name='D210 + ',
                              ylim=c(0,4),
                              col.histogram="#2167a4",
                              fill.histogram="#2167a4")
tracklist[['D210-rvs']] <- DataTrack(range = bw_files[4],
                                     genome="hg19",
                                     type="histogram",
                                     name='D210 - ',
                                     ylim=c(4,0),
                                     col.histogram="#eb1700",
                                     fill.histogram="#eb1700")

tracklist[['WKDD-fwd']] <- DataTrack(range = bw_files[9],
                                     genome="hg19",
                                     type="histogram",
                                     name='WKDD + ',
                                     ylim=c(0,4),
                                     ylab=2,
                                     col.histogram="#2167a4",
                                     fill.histogram="#2167a4")
tracklist[['WKDD-rvs']] <- DataTrack(range = bw_files[10],
                                     genome="hg19",
                                     type="histogram",
                                     name=' WKDD -',
                                     ylim=c(4,0),
                                     col.histogram="#eb1700",
                                     fill.histogram="#eb1700",
                                     showAxis=TRUE)

#写入比例尺
scalebar <- GenomeAxisTrack(scale=0.25,
                            col="black",
                            fontcolor="black",
                            name="Scale",
                            labelPos="above",showTitle=F)
tracklist[["scalebar"]]<-scalebar

# 画图
plotTracks(trackList = tracklist,
           chromosome = "chr16",
           from =  69141913, to= 69205033,
           background.panel = "#f6f6f6",
           background.title = "white",
           col.title="black",col.axis="black",
           rot.title=0,cex.title=0.5,margin=10,title.width=1.75,
           cex.axis=1
           )
img_38ebfc28a44cd43226f7dd1ef79cf731.jpe
Gviz

后续用AI修改下坐标轴,就几乎和原图差不多了。此外可能还要调整之前脚本的bin size, 使得整体更加平滑

看图说话: 由于WKKD在D210N的基础上继续突变了几个位点,使得原本只丧失了RNASEH1的催化活性的D210N进一步丧失了结合到RNA/DNA杂合体的能力,在实验中就可以作为 负对照。上图就是其中一个有代表性的区间。

目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
126 0
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】
【python】python当当数据分析可视化聚类支持向量机预测(源码+数据集+论文)【独一无二】
|
20天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
222 0
|
2月前
|
数据采集 数据可视化 数据挖掘
Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
【10月更文挑战第3天】Python 数据分析实战:使用 Pandas 进行数据清洗与可视化
105 0
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
53 0
|
3月前
|
机器学习/深度学习 存储 数据可视化
数据分析和可视化
数据分析和可视化
|
3月前
|
数据采集 传感器 数据可视化
利用Python进行数据分析与可视化
【9月更文挑战第11天】在数字化时代,数据已成为企业决策和科学研究的关键。本文将引导读者了解如何使用Python这一强大的工具进行数据分析和可视化,帮助初学者理解数据处理的流程,并掌握基本的可视化技术。通过实际案例,我们将展示如何从原始数据中提取信息,进行清洗、处理,最终以图形方式展现结果,使复杂的数据变得直观易懂。
|
4月前
|
存储 编解码 数据可视化
Visium HD空间数据分析、可视化以及整合 (2)
Visium HD空间数据分析、可视化以及整合 (2)
94 3
Visium HD空间数据分析、可视化以及整合 (2)
|
4月前
|
数据可视化 数据挖掘 Python
"揭秘Visium HD黑科技:空间数据分析大揭秘,可视化与整合的艺术之旅!"
【8月更文挑战第20天】近年来,空间转录组技术,特别是Visium HD技术,因其高分辨率与高通量特性,在单细胞生物学领域受到广泛关注。本文通过Python演示了Visium HD数据的全流程分析:从数据准备(读取表达矩阵和空间坐标)、空间数据分析(计算基因表达统计量)、数据可视化(绘制基因表达热图和空间点分布图),到多样本数据整合,为读者提供了实用的分析指南,助力深入探索空间转录组学的奥秘。
90 4