openmp在图像处理上面的运用

简介: // openmptest的测试程序 //   #include "stdafx.h"   void Test(int n){     for (int i=0;i
// openmptest的测试程序
//
 
#include "stdafx.h"
 
void Test(int n){
    for (int i=0;i<10000;i++)
    {
        int j=0;
        j = j+1;
    }
    printf("%d",n);
}
 
int _tmain(int argc_TCHARargv[])
{
    for (int i=0;i<10;i++)
    {
        Test(i);
    }
    getchar();
    return 0;
}
而开启openmp
代码
// openmptest的测试程序
//
 
#include "stdafx.h"
 
void Test(int n){
    for (int i=0;i<10000;i++)
    {
        int j=0;
        j = j+1;
    }
    printf("%d",n);
}
 
int _tmain(int argc_TCHARargv[])
{
    for (int i=0;i<10;i++)
    {
        Test(i);
    }
    getchar();
    return 0;
}
速度更快。
在最简单的层次上,openmp提供了粗颗粒的并行算法。一直以来,我都在寻找图像处理的加速算法,但是由于图像处理的特性(大多为线性项目),所以很难有好的提速方法。但是对于批量的图像处理,采用我们这种方法将是非常好用的。
编写较为复杂的opencv 程序
// openmptest的测试程序
//
 
#include "stdafx.h"
#include <iostream>
#include <opencv2/opencv.hpp>  
#include "GoCvHelper.h"
using namespace std;
using namespace cv;
using namespace GO;
 
Mat Test(Mat src){
    Mat draw;
    Mat gray;
    cvtColor(src,gray,COLOR_BGR2GRAY);
    threshold(gray,gray,100,255,THRESH_OTSU);
    connection2(gray,draw);
    return draw;
}
 
 
int _tmain(int argc_TCHARargv[])
{    
    //时间记录
    const int64 start = getTickCount();
    vector<MatvectorMats;
    //文件目录
    char cbuf[100] = "F:/图片资源/纹理库brodatz/brodatzjpg";
    //获取所有文件
    getFiles(cbuf,vectorMats);
    //循环处理
   // #pragma omp parallel for
    for (int i=0;i<vectorMats.size();i++)
    {
        Mat dst = Test(vectorMats[i]);
    }
    
    //时间
    double duration = (cv::getTickCount() - start)/getTickFrequency();
    printf("共消耗时间%f",duration);
    waitKey();
    return 0;
}
不用mp的是这么长时间
不看算法本身的效率,在解决这个问题的时候,这种方法还是相当好用的。
 
目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
6月前
|
存储 编解码 算法
OpenCV 图像处理学习手册:1~5
OpenCV 图像处理学习手册:1~5
81 0
|
6月前
|
openCL 开发工具 C语言
OpenCV 图像处理学习手册:6~7
OpenCV 图像处理学习手册:6~7
152 0
WK
|
3月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
51 4
|
机器学习/深度学习 数据采集 监控
快速学完OpenCV+python计算机视觉图像处理(一)
快速学完OpenCV+python计算机视觉图像处理(一)
|
6月前
|
编解码 算法 自动驾驶
|
机器学习/深度学习 算法 C语言
FPGA图像处理之边缘检测算法的实现
边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。
FPGA图像处理之边缘检测算法的实现
|
机器学习/深度学习 算法 自动驾驶
10个图像处理的Python库
在这篇文章中,我们将整理计算机视觉项目中常用的Python库,如果你想进入计算机视觉领域,可以先了解下本文介绍的库,这会对你的工作很有帮助。
218 1
|
机器学习/深度学习 JavaScript 前端开发
快速学完OpenCV+python计算机视觉图像处理(二)
快速学完OpenCV+python计算机视觉图像处理(二)
115 1
|
PHP 数据安全/隐私保护 计算机视觉
PHPImagine 图像处理库介绍
随着网络的发展,人们对图像的需求越来越高。作为一个PHP开发者,我们在处理图像时经常会遇到一些问题,比如裁剪、缩放、加水印等。这些问题都可以通过使用图像处理库来解决。PHPImagine就是一种优秀的图像处理库。
79 0
|
编解码 数据可视化 算法
Python图像处理:频域滤波降噪和图像增强
图像处理已经成为我们日常生活中不可或缺的一部分,涉及到社交媒体和医学成像等各个领域。通过数码相机或卫星照片和医学扫描等其他来源获得的图像可能需要预处理以消除或增强噪声。频域滤波是一种可行的解决方案,它可以在增强图像锐化的同时消除噪声。
358 0
Python图像处理:频域滤波降噪和图像增强