精通visual c++指纹模式识别系统算法及实现

简介: 通过学习,掌握以下几个问题:1、核心算法,并且向GVF衍生;2、核心库封装的方法2016年11月16日06:52:51昨日实现了梯度场和频率场的计算。最大的感觉就是建立基础代码库的重要性。如果使用opencv或者别的代码库,可能它也能实现一些功能,特别对于建立在感官上的效果,差别不大。

通过学习,掌握以下几个问题:
1、核心算法,并且向GVF衍生;
2、核心库封装的方法
2016年11月16日06:52:51
昨日实现了梯度场和频率场的计算。最大的感觉就是建立基础代码库的重要性。
如果使用opencv或者别的代码库,可能它也能实现一些功能,特别对于建立在感官上的效果,差别不大。但是,如果是用于数学计算的,特别是对于我现在还不是很清楚过程,也不是很清楚结果的算法来说,精确的、容易比对的代码更重要。在这种时候,我更愿意采取原始的、按照定义实现的计算方法。
在昨天的频度场计算中,我突破好几天的困扰,直接按照定义修改代码,比如计算频度场
int mainint argcchar** argv )
{
    Mat src = imread2gray("E:\\template\\1.bmp");
    src.convertTo(src,CV_8U);//255的运算
    pyrDown(src,src);
    Mat dst;//结果
    dst.create(src.size(),src.type());   
 
    int IMGH =src.rows;    
    int IMGW =src.cols;  
    int gradSum;
    int grad;
    long  vxvylvxlvy;
 
    unsigned char   *lpSrc = NULL;
    unsigned char   *lpOri = NULL;
    long    anglenum;
    double  fAngle;
    int r = 6;
    int i;int j;
    for (int y = 0;y<IMGH-1;y++)
    {
        for (int x=0;x<IMGW-1;x++)
        {
            lpOri = dst.ptr<uchar>(0) + y*IMGW + x;
            lvx = 0;
            lvy = 0;
            num = 0;
            for(i = -ri <= ri++)    // 为提高速度,步长为
            {
                if(y+i<1 || y+i>=IMGH-1) continue;
                for(j = -rj <= rj++)    // 为提高速度,步长为
                {
                    if(x+j<1 || x+j>=IMGW-1) continue;
                    lpSrc = src.ptr<uchar>(0) + (y+i)*(IMGW) + x+j;
                    //求x方向偏导
                    vx = *(lpSrc + IMGW + 1) - *(lpSrc + IMGW - 1) +
                        *(lpSrc + 1)*2 - *(lpSrc - 1)*2 +
                        *(lpSrc - IMGW + 1) - *(lpSrc - IMGW - 1);
                    //求y方向偏导
                    vy = *(lpSrc + IMGW - 1) - *(lpSrc - IMGW - 1) +
                        *(lpSrc + IMGW)*2 - *(lpSrc - IMGW)*2 +
                        *(lpSrc + IMGW + 1) - *(lpSrc - IMGW + 1);
 
                    lvx += vx * vy * 2;//sin(2sita)
                    lvy += vx*vx - vy*vy;//cos(2sita)
                    num++;
                }
            }
 
            if(num == 0) num = 1;
            // 求弧度
            fAngle = atan2((float)lvy, (float)lvx);
            // 变换到(0 - 2*pi)
            if(fAngle < 0)    fAngle += 2*PI;
 
            // 求纹线角度
            fAngle = (fAngle*EPI*0.5 + 0.5);
            angle = (long)fAngle;
 
            // 因为采用sobel算子,所以角度偏转了度,所以要旋转求得的角度
            angle -= 135;
            // 角度变换到(-180)
            if(angle <= 0)    angle += 180;
 
            angle = 180-angle;
            // 最终纹线角度
            *lpOri = (unsigned char)angle;
            *(lpOri + 1) = (unsigned char)angle;
            *(lpOri + IMGW) = (unsigned char)angle;
            *(lpOri + IMGW + 1) = (unsigned char)angle;
        }
    }
     
    pyrUp(dst,dst);
    imwrite("e:/sandbox/n1dst.bmp",dst);
    return 0;
}
这样从结果的面上来看,已经是非常接近书中给出的效果了。
下一步,专门成立GOGVF项目作为GOCVHelper的一个部分,逐步地改造现有代码库,实现书中的效果。并且向GOGVF的按照定义实现做出努力。
 
2016年11月16日06:52:51 已经逐步移植代码,从梯度一直做到了增强。虽然现在的代码还有一些问题,但是基本不影响使用。并且生成了专门的GOGVF库,用于收集这方面的代码。
虽然这本书很精彩,里面的代码对于我来说都是右开创性的;但是不可否认很多地方,他的代码写的还是比较繁琐、冗余的,给阅读移植带来了不少困难。
使用的情况是这样的
int mainint argcchar** argv )
{
    Mat src = imread2gray("E:\\template\\2.bmp");
    Mat grad = getGrads(src); //梯度场
    Mat org = getOrientMap(src); //方向场
    Mat seg;
    segment(grad,seg); //对梯度场进行阈值,seg为分割结果
    segment_clearEdge(src,org,seg);//反馈到src和org中了,这种方法倒也是方便
    Mat equ = src.clone();
    //cv::equalizeHist(src,equ);
    equalize(src,equ);
    Mat gauss = src.clone();
    GaussSmooth(equ,gauss,0.4);
    Mat smo = src.clone();
    smooth(gauss,smo,1,1);
    orientEnhance(org,smo);
    orientEnhance(org,smo);
    imshow("dst",smo);
    waitKey(0);
    return 0;
}
原始图像
梯度图像,可以看到,在指纹比较密集的地方,梯度很强,而在背景区域,比较干净。
通过梯度场,可以背景前景分离。
方向场。基本上是表示了指纹线段角度的变化。特别观察中间的位置,由255跳跃至0,是因为在中间的部分,指纹几乎是水平的。
  
gaobor增强,现在在细节部分还有一点问题,但是已经基本体现出来特点了。
这是我第一次自己写代码实现gabor的效果,也是深入理解gabor的一次。回头思考,指纹识别其实是很好的算法平台,因为采集到的图片,本身背景前景分割还是比较干净的;在以前,如果处理这样的图片,我可能会选择阈值分割这种直观的方法;在实现了frangi算法之后,很多时候我会拿frangi来实验一下,看看效果。但是这次试用gabor增强,应该说是给我增加了一种新的思路,以后的眼界会更宽阔。。
gaobor增强的核心,是对前面计算出来的梯度场中的“纹线方向进行平滑滤波,纹线 的竖直方向进行锐化滤波
。那么首先就是要计算处正确的梯度场来。在本例中,图片质量比较好,能够通过几乎是定义计算的方法计算出正确稳定的梯度场(但是在其他很多地方,可能不能这样使用?用什么计算出正确的梯度场,作为一个专门的话题)。然后就是通过对梯度进行增强。这里才是实现gaobor的地方。这里贴出的是实现的代码,推导过程分帖说明。关键就是“量化“。
int DDIndex(int angle)
{
    /////////////////////////////////////////////////////////////////////////
    //    angle: [in] 角度 (0 - 180)
    /////////////////////////////////////////////////////////////////////////
    if(angle >= 173 || angle < 8)
    {
        return 0;
    }
    else
    {
        return ((angle-8)/15 + 1);
    }
}
 
void orientEnhance(Mat org,Matdst)
{
    int xy;
    int i;
    int d = 0;
    int sum = 0;
    // 纹线方向上进行平滑滤波的平滑滤波器
    int Hw[7] = {1, 1, 1, 1, 1, 1, 1};
    // 纹线方向的垂直方向上进行锐化滤波的锐化滤波器
    int Vw[7] = {-3, -1, 3, 9, 3, -1, -3};
    int hsum = 0;
    int vsum = 0;
    int temp = 0;
    int IMGW = org.cols;
    int IMGH = org.rows;
 
    BYTE  *lpSrc = NULL;
    BYTE  *lpDir = NULL;
 
    BYTE *g_lpOrient = org.ptr<uchar>(0);
    BYTE *g_lpOrgFinger = dst.ptr<uchar>(0);
    BYTE *g_lpTemp = dst.ptr<uchar>(0);
    //BYTE *g_lpTemp = new BYTE[IMGW * IMGH];
 
    // 纹线方向上进行平滑滤波
    temp = 0;
    for(y = 0; y < IMGHy++)
    {
        for(x = 0; x < IMGWx++)
        {
            lpDir = g_lpOrient + temp + x;
            lpSrc = g_lpOrgFinger + temp + x;
            // 纹线方向的索引
            d = DDIndex(*lpDir);
            sum = 0;
            hsum = 0;
            for(i = 0; i < 7; i++)
            {
                if(y+g_DDSite[d][i][1] < 0 || y+g_DDSite[d][i][1] >= IMGH ||
                    x+g_DDSite[d][i][0] < 0 || x+g_DDSite[d][i][0] >= IMGW)
                {
                    continue;
                }
                sum += Hw[i]*(*(lpSrc + g_DDSite[d][i][1]*IMGW + g_DDSite[d][i][0]));
                hsum += Hw[i];
            }
            if(hsum != 0)
            {
                *(g_lpTemp + temp + x) = (BYTE)(sum/hsum);
            }
            else
            {
                *(g_lpTemp + temp + x) = 255;
            }
        }
        temp += IMGW;
    }
 
    // 纹线方向的垂直方向上进行锐化滤波
    temp = 0;
    for(y = 0; y < IMGHy++)
    {
        for(x = 0; x < IMGWx++)
        {
            lpDir = g_lpOrient + temp + x;
            lpSrc = g_lpTemp + temp + x;
 
            // 纹线方向的垂直方向的索引
            d = (DDIndex(*lpDir)+6) % 12;
 
            sum = 0;
            vsum = 0;
            for(i = 0; i < 7; i++)
            {
                if(y+g_DDSite[d][i][1] < 0 || y+g_DDSite[d][i][1] >= IMGH ||
                    x+g_DDSite[d][i][0] < 0 || x+g_DDSite[d][i][0] >= IMGW)
                {
                    continue;
                }
                sum += Vw[i]*(*(lpSrc + g_DDSite[d][i][1]*IMGW + g_DDSite[d][i][0]));
                vsum += Vw[i];
            }
            if(vsum > 0)
            {
                sum /= vsum;
                if(sum > 255)
                {
                    *(g_lpOrgFinger + temp + x) = 255;
                }
                else if(sum < 0)
                {
                    *(g_lpOrgFinger + temp + x) = 0;
                }
                else
                {
                    *(g_lpOrgFinger + temp + x) = (BYTE)sum;
                }
            }
            else
            {
                *(g_lpOrgFinger + temp + x) = 255;
            }
        }
        temp += IMGW;
    }
 
}
了现在的代码,下一步就可以思考如何对自然环境下的许多图像进行增强了。
 
 
 
 





目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
12天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
43 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
12天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
52 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
18天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
36 3
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
存储 算法 C++
高精度算法(加、减、乘、除,使用c++实现)
高精度算法(加、减、乘、除,使用c++实现)
488 0
高精度算法(加、减、乘、除,使用c++实现)
|
1月前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
1月前
|
机器学习/深度学习 人工智能 开发框架
【AI系统】AI 学习方法与算法现状
在人工智能的历史长河中,我们见证了从规则驱动系统到现代机器学习模型的转变。AI的学习方法基于深度神经网络,通过前向传播、反向传播和梯度更新不断优化权重,实现从训练到推理的过程。当前,AI算法如CNN、RNN、GNN和GAN等在各自领域取得突破,推动技术进步的同时也带来了更大的挑战,要求算法工程师与系统设计师紧密合作,共同拓展AI技术的边界。
85 1
|
1月前
|
算法 数据处理 C++
c++ STL划分算法;partition()、partition_copy()、stable_partition()、partition_point()详解
这些算法是C++ STL中处理和组织数据的强大工具,能够高效地实现复杂的数据处理逻辑。理解它们的差异和应用场景,将有助于编写更加高效和清晰的C++代码。
25 0
|
1月前
|
存储 算法 决策智能
【算法】博弈论(C/C++)
【算法】博弈论(C/C++)
|
1月前
|
存储 算法 C++
【算法】哈希映射(C/C++)
【算法】哈希映射(C/C++)
下一篇
无影云桌面