(4opencv)对OpenCV中“旋转”的思考和实验

简介: ​    我记得曾经有人对OpenCV的旋转吐槽,意思是它自己没有很好的关于选择的算法。在新的版本里面添加了这些函数(我还没有时间去看是什么时候pr的)。现在一个比较棘手的问题,就是OpenCV中旋转是如何定量的,什么是正方向?什么是负方向?什么时候用角度?什么时候用弧度?下面就是针对这几个问题,通过查资料、做实验的方式搞清楚。
​    我记得曾经有人对OpenCV的旋转吐槽,意思是它自己没有很好的关于选择的算法。在新的版本里面添加了这些函数(我还没有时间去看是什么时候pr的)。现在一个比较棘手的问题,就是OpenCV中旋转是如何定量的,什么是正方向?什么是负方向?什么时候用角度?什么时候用弧度?
下面就是针对这几个问题,通过查资料、做实验的方式搞清楚。
一、OpenCV中旋转式如何定量的
也就是坐标系问题。OpenCV坐标系以(0,0)点为原点,以向下为Y轴正方向,以向右为X轴正方向。
对于旋转而言,通过“旋转中点”和“旋转的角度”两个值来定量一个“旋转”。

二、什么是正方向?什么是负方向?什么时候用角度?什么时候用弧度?
一般来说,坐标系中以X轴正方向为原点,而以逆时针为正、顺时针为负。
至于什么时候用角度、什么时候用弧度,一般来说,角度180度对应于弧度的PI,由于在使用函数的时候,一般只能以数值类型(不带单位)作为参数,所以需要根据函数自己的要求选择弧度还是角度.

三、相关的函数和使用方法。
可能这才是最为关键的。我这样来归纳。和旋转相关的函数可以大致分为“获得旋转”和“使用旋转”两类。
“获得旋转”而言,旋转矩形、PCA都可以获得旋转;
“使用旋转”而言,可以使用放射变换 warpAffine

具体而言,包括以下内容:

1、 CV_EXPORTS_W  void rotate(InputArray srcOutputArray dstint rotateCode);
这是OpenCV在新版本里面提供的选择函数,第3个参数是旋转的选择,具体如下
enum RotateFlags {
    ROTATE_90_CLOCKWISE = 0//Rotate 90 degrees clockwise
    ROTATE_180 = 1//Rotate 180 degrees clockwise
    ROTATE_90_COUNTERCLOCKWISE = 2//Rotate 270 degrees clockwise
};
/** @brief Rotates a 2D array in multiples of 90 degrees.
The function rotate rotates the array in one of three different ways:
*   Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
*   Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
*   Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
@param src input array.
@param dst output array of the same type as src.  The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90 and ROTATE_270.
@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
@sa transpose , repeat , completeSymm, flip, RotateFlags
*/
那么它存在的问题就是只能旋转具体的角度(90、180)等,不是很灵活

2、rotate修改
为了解决不是很灵活的问题,自己重新写的旋转函数,第3个参数直接是旋转的角度
void rotate(const Mat& src, Mat& dst, float angle)
{
    CV_Assert(!src.empty());
    float radian = angle /180.0 * PI;
    int uniSize = max(src.cols, src.rows) * 2;
    int dx = (uniSize - src.cols) / 2;
    int dy = (uniSize - src.rows) / 2;
    copyMakeBorder(src, dst, dy, dy, dx, dx, BORDER_CONSTANT);
     //旋转中心
     Point2f center(dst.cols/2, dst.rows/2);
     Mat affine_matrix = getRotationMatrix2D( center, angle, 1.0 );
     warpAffine(dst, dst, affine_matrix, dst.size());
     float sinVal = fabs(sin(radian));
     float cosVal = fabs(cos(radian));
     //旋转后的图像大小
     Size targetSize(src.cols * cosVal + src.rows * sinVal,src.cols * sinVal + src.rows * cosVal);
     //剪掉四周边框
     int x = (dst.cols - targetSize.width) / 2;
     int y = (dst.rows - targetSize.height) / 2;
     Rect rect(x, y, targetSize.width, targetSize.height);
     dst = Mat(dst, rect);
 }

3、 getRotationMatrix2D函数
主要用于获得图像绕着 某一点的旋转矩阵 
函数调用形式:
Mat getRotationMatrix2D(Point2f center, double angle, double scale)
参数详解:
Point2f center:表示旋转的中心点
double angle:表示旋转的 角度
double scale:图像缩放因子
例子
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace cv;
using namespace std;
/// 全局变量
char* source_window = "Source image";
char* warp_window = "Warp";
char* warp_rotate_window = "Warp + Rotate";
/** @function main */
int main( int argc, char** argv )
{
Point2f srcTri[3];
Point2f dstTri[3];
Mat rot_mat( 23, CV_32FC1 );
Mat warp_mat( 23, CV_32FC1 );
Mat src, warp_dst, warp_rotate_dst;
/// 加载源图像
src = imread( argv[1], 1 );
/// 设置目标图像的大小和类型与源图像一致
warp_dst = Mat::zeros( src.rows, src.cols, src.type() );
/// 设置源图像和目标图像上的三组点以计算仿射变换
srcTri[0= Point2f( 0,0 );
srcTri[1= Point2f( src.cols - 10 );
srcTri[2= Point2f( 0, src.rows - 1 );
dstTri[0= Point2f( src.cols*0.0, src.rows*0.33 );
dstTri[1= Point2f( src.cols*0.85, src.rows*0.25 );
dstTri[2= Point2f( src.cols*0.15, src.rows*0.7 ); 
/// 求得仿射变换
warp_mat = getAffineTransform( srcTri, dstTri );
/// 对源图像应用上面求得的仿射变换
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
/** 对图像扭曲后再旋转 */
/// 计算绕图像中点顺时针旋转50度缩放因子为0.6的旋转矩阵
Point center = Point( warp_dst.cols/2, warp_dst.rows/2 );
double angle = -50.0;
double scale = 0.6;
/// 通过上面的旋转细节信息求得旋转矩阵
rot_mat = getRotationMatrix2D( center, angle, scale );
/// 旋转已扭曲图像
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
/// 显示结果
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
imshow( warp_window, warp_dst );
namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
imshow( warp_rotate_window, warp_rotate_dst );
/// 等待用户按任意按键退出程序
waitKey(0);
return 0;
}

4、通过pca获得图像的弧度

double getOrientation(vector<Point> &pts, Point2f& pos,Mat& img)
{
    //Construct a buffer used by the pca analysis
    Mat data_pts = Mat(pts.size(), 2, CV_64FC1);
    for (int i = 0; i < data_pts.rows; ++i)
    {
        data_pts.at<double>(i, 0= pts[i].x;
        data_pts.at<double>(i, 1= pts[i].y;
    }
    //Perform PCA analysis
    PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
    //Store the position of the object
    pos = Point2f(pca_analysis.mean.at<double>(00),
        pca_analysis.mean.at<double>(01));
    //Store the eigenvalues and eigenvectors
    vector<Point2d> eigen_vecs(2);
    vector<double> eigen_val(2);
    for (int i = 0; i < 2++i)
    {
        eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
            pca_analysis.eigenvectors.at<double>(i, 1));
        eigen_val[i] = pca_analysis.eigenvalues.at<double>(i,0);
    }
    return atan2(eigen_vecs[0].y, eigen_vecs[0].x);
}

这个函数的目的,在于通过PCA方法,获得当前轮廓的主要方向。

5、直接获得 某点旋转以后位置,这个地方使用的是弧度

//获得单个点经过旋转后所在精确坐标
Point2f GetPointAfterRotate(Point2f inputpoint,Point2f center,double angle){
    Point2d preturn;
    preturn.x = (inputpoint.x - center.x)*cos(-angle) - (inputpoint.y - center.y)*sin(-angle)+center.x;
    preturn.y = (inputpoint.x - center.x)*sin(-angle) + (inputpoint.y - center.y)*cos(-angle)+center.y;
    return preturn;
}
此外值得注意的一点就是,其实我们可以不基于OpenCV函数,直接计算某点旋转以后位置,采用的是数学方法。


四、使用例子
综合使用,请查看:
感谢阅读至此,希望有所帮助。








目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
|
5月前
|
机器学习/深度学习 算法 开发工具
【四箭齐发】OpenCV实验大师工作流引擎SDK
【四箭齐发】OpenCV实验大师工作流引擎SDK
64 1
【四箭齐发】OpenCV实验大师工作流引擎SDK
|
5月前
|
算法 开发工具 计算机视觉
【零代码研发】OpenCV实验大师工作流引擎C++ SDK演示
【零代码研发】OpenCV实验大师工作流引擎C++ SDK演示
83 1
|
5月前
|
机器学习/深度学习 算法 Ubuntu
十年OpenCV开发以后发布的作品 - OpenCV实验大师
十年OpenCV开发以后发布的作品 - OpenCV实验大师
52 2
|
5月前
|
存储 Cloud Native Linux
OpenCV图像翻转和旋转
OpenCV图像翻转和旋转
|
6月前
|
监控 API 计算机视觉
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
80 0
|
6月前
|
计算机视觉 Python
OpenCV中图像的平移、旋转、倾斜、透视的讲解与实战(附Python源码)
OpenCV中图像的平移、旋转、倾斜、透视的讲解与实战(附Python源码)
327 0
|
6月前
|
计算机视觉 开发者 Python
OpenCV中图像的缩放与旋转讲解及实战演示(附Python源码)
OpenCV中图像的缩放与旋转讲解及实战演示(附Python源码)
156 0
|
算法 计算机视觉
数字图像处理OpenCV——实验三 图像分割实验
实验三 图像分割实验 实验项目名称:图像分割实验 (1) 进一步理解图像的阈值分割方法和边缘检测方法的原理。 (2) 掌握图像基本全局阈值方法和最大类间方差法(otsu法)的原理并编程实现。 (3) 编程实现图像的边缘检测。 编程实现图像阈值分割(基本全局阈值方法和otsu法)和边缘检测。 图像的二值化处理图像分割中的一个主要内容,就是将图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。用I表示原图,R表示二值化后的图,则二值化的过程可以用以下公式表示: thr表示选取的阈值。二值化的过
426 0
数字图像处理OpenCV——实验三 图像分割实验
|
计算机视觉
OpenCV-最小包围旋转矩形边框cv::minAreaRect
OpenCV-最小包围旋转矩形边框cv::minAreaRect
179 0
|
计算机视觉
OpenCV-绘制旋转矩形
OpenCV-绘制旋转矩形
173 0
下一篇
无影云桌面