基于Scrapy框架爬取厦门房价

简介: 本文的运行环境是Win10,IDE是Pycharm,Python版本是3.6。请先保证自己安装好Pycharm和Scrapy。爬取的网站是国内著名的房天下网,网址:http://esf.xm.fang.com/,网站界面如下图所示。

本文的运行环境是Win10,IDE是Pycharm,Python版本是3.6。
请先保证自己安装好Pycharm和Scrapy。

  1. 爬取的网站是国内著名的房天下网,网址:http://esf.xm.fang.com/,网站界面如下图所示。

    img_7feaadfc55ea636d5b307b794772d07d.png
    网站列表界面.png

    img_ff405bd56a1d43de0e09a83bc77f1455.png
    网站详情界面.png

    可以看出该网站信息较为全面。

  2. 用Scrapy的Shell测试该网站是否能爬取。
    方法是在任意位置打开cmd或者PowerShell,输入命令scrapy shell "esf.xm.fang.com",
    一般来说不会出现错误,如果报错ImportError: DLL load failed: 操作系统无法运行 %1。,解决方法是把C:\Windows\System32目录下的libeay32.dll和ssleay32.dll删除即可
    确定命令正确后运行,结果如下图。

    img_3931dad0c8e51a04ab5e7a113ba2b8b4.png
    测试能否爬取1.png

    In[1]:后输入命令view(response),确认命令正确后运行,会自动弹出浏览器窗口,如果出现如下图所示网站,则表示scrapy可以顺利从网站获取信息,即可以完成爬虫任务。
    img_bc23b12b462e5a571d89c14140504299.png
    测试能够爬取2.png

    从上图看出运行命令后打开的是本地的网站,即网站内容可以顺利从服务器缓存到本地。

  3. 在你的工程文件中按住Shit,鼠标右击呼唤出下图所示菜单。
    选择下图所标识的在此处打开PowerShell窗口,cmd和PowerShell起到的效果相同。

    img_195b19f5ce456ea74237110460289a6d.png
    打开PowerShell.png

    在PoweShell中运行命令scrapy startproject XiamenHouse
    img_55674124db943fb3bee61685bb793697.png
    新建工程成功.png

    新建工程成功后,在PowerShell中进入工程的文件,命令是 cd .\XiamenHouse
    新建爬虫文件的命令是scrapy genspider house "esf.xm.fang.com"
    img_30f50f3b86c61e86040397fc4399ec78.png
    新建爬虫成功.png

  4. 用Pycharm打开爬虫工程


    img_5de8b0c0da11e678943357a5c026c50d.png
    打开爬虫工程1.png

    选择工程所在的文件夹打开后,工程结构如下图所示。


    img_602a6b4c987ee92e5728f08281d23f98.png
    image.png
  5. 观察房屋详情界面,需要提取15个字段,分别是:标题title,总价price,首付downPayment,户型sizeType,建筑面积size,单价unitPrice,朝向orientation,楼层floor,装修decoration,社区community, 区域region,学校school,房源信息houseDetail,核心卖点keySellingPoint,小区配套equipment
    月供是动态计算生成,较难爬取。

    img_c67d6ea95af5e19e70437ac762e25112.png
    image.png

    img_43685bcee32147ec5c82b643ad2e368a.png
    image.png

    根据上述字段总结,编写工程文件夹中的items.py文件

import scrapy
from scrapy import Field

class XiamenHouseItem(scrapy.Item):
    title = Field()
    price = Field()
    downPayment = Field()
    monthInstallment = Field()
    sizeType = Field()
    size = Field()
    unitPrice = Field()
    orientation = Field()
    floor = Field()
    decoration = Field()
    community = Field()
    region = Field()
    school = Field()
    houseDetail = Field()
    keySellingPoint = Field()
    equipment = Field()
  1. 编写工程文件夹中的house.py文件
    需要进行多级页面爬取,从scrapy.http中引入Request方法。
    爬虫名为house,用于scrapy crawl house命令中。
    厦门市有6个区,分别为集美、翔安、同安、海沧、湖里、思明。
    每个区有8个价格分类
    img_b398b56ded3e59840a091c586675334b.png
    价格分类.png

    start_urls这个列表中有6*8=48个url,parse函数用于解析这48个url,即分析每个区每个价格区间有多少页房价信息。
    parse函数得到每个区每个价格区间的房价信息最大页面数之后,通过字符串拼接得到每一页的url。
    每一页的url用yield Request(url,callback=self.parse1)发起请求,并调用parse1函数进行解析。
    parse1函数用于获取每一页30个房价详情页面的url链接,通过yield Request(detailUrl,callback=self.parse2)发起请求,并调用parse2函数进行解析。
    parse2的难点在于xpath的书写,需要懂xpath基本语法,书写时可以在浏览器的调试器中检查是否正确。
    确定xpath书写正确,成功获取到字段后,将字段存入item,最后通过yield item交给管道处理。
    python3可以把变量名设置为中文,但必须全部是中文,不能为100万以下这种形式。
# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request
from XiamenHouse.items import XiamenHouseItem
import json
class HouseSpider(scrapy.Spider):
    name = 'house'
    allowed_domains = ['esf.xm.fang.com']
    start_urls = []
    region_dict = dict(
        集美 = "house-a0354",
        翔安 = "house-a0350",
        同安 = "house-a0353",
        海沧 = "house-a0355",
        湖里 = "house-a0351",
        思明 = "house-a0352"
    )
    price_dict = dict(
        d100 = "d2100",
        c100d200 = "c2100-d2200",
        c200d250 = "c2200-d2250",
        c250d300 = "c2250-d2300",
        c300d400 = "c2300-d2400",
        c400d500 = "c2400-d2500",
        c500d600 = "c2500-d2600",
        c600 = "c2600"
    )
    for region in list(region_dict.keys()):
        for price in list(price_dict.keys()):
            url = "http://esf.xm.fang.com/{}/{}/".format(region_dict[region],price_dict[price])
            start_urls.append(url)
    #start_urls共有48个,parse函数的作用是找出这48个分类中每个分类的最大页数
    def parse(self, response):
        pageNum = response.xpath("//span[@class='txt']/text()").extract()[0].strip('共').strip('页')
        for i in range(1,int(pageNum)+1):
            url = "{}-i3{}/".format(response.url.strip('/'),i)
            yield Request(url,callback=self.parse1)

    def parse1(self, response):
        house_list = response.xpath("//div[@class='houseList']/dl")
        for house in house_list:
            if "list" in house.xpath("@id").extract()[0]:
                detailUrl = "http://esf.xm.fang.com" + house.xpath("dd[1]/p/a/@href").extract()[0]
                yield Request(detailUrl,callback=self.parse2)

    def parse2(self, response):
        def find(xpath,pNode=response):
            if len(pNode.xpath(xpath)):
                return pNode.xpath(xpath).extract()[0]
            else:
                return ''
        item = XiamenHouseItem()
        item['title'] = find("//h1[@class='title floatl']/text()").strip()
        item['price'] = find("//div[@class='trl-item_top']/div[1]/i/text()") + "万"
        item['downPayment'] = find("//div[@class='trl-item']/text()").strip().strip("首付约 ")
        item['sizeType'] = find("//div[@class='tab-cont-right']/div[2]/div[1]/div[1]/text()").strip()
        item['size'] = find("//div[@class='tab-cont-right']/div[2]/div[2]/div[1]/text()")
        item['unitPrice'] = find("//div[@class='tab-cont-right']/div[2]/div[3]/div[1]/text()")
        item['orientation'] = find("//div[@class='tab-cont-right']/div[3]/div[1]/div[1]/text()")
        item['floor'] = find("//div[@class='tab-cont-right']/div[3]/div[2]/div[1]/text()") + ' ' + \
                        find("//div[@class='tab-cont-right']/div[3]/div[2]/div[2]/text()")
        item['decoration'] = find("//div[@class='tab-cont-right']/div[3]/div[3]/div[1]/text()")
        item['community'] = find("//div[@class='tab-cont-right']/div[4]/div[1]/div[2]/a/text()")
        item['region'] = find("//div[@class='tab-cont-right']/div[4]/div[2]/div[2]/a[1]/text()").strip() + \
                         '-' + find("//div[@class='tab-cont-right']/div[4]/div[2]/div[2]/a[2]/text()").strip()
        item['school'] = find("//div[@class='tab-cont-right']/div[4]/div[3]/div[2]/a[1]/text()")
        detail_list = response.xpath("//div[@class='content-item fydes-item']/div[2]/div")
        detail_dict = {}
        for detail in detail_list:
            key = find("span[1]/text()",detail)
            value = find("span[2]/text()",detail).strip()
            detail_dict[key] = value
        item['houseDetail'] = json.dumps(detail_dict,ensure_ascii=False)
        item['keySellingPoint'] = '\n'.join(response.xpath("//div[text()='核心卖点']/../div[2]/div/text()").extract()).strip()
        item['equipment'] = '\n'.join(response.xpath("//div[text()='小区配套']/../div[2]/text()").extract()).strip()
        yield item
  1. 编写工程文件夹中的pipelines.py文件
    house_list用于收集每次传递进来的item
    close_spider函数用于指明爬虫结束时进行的操作,函数中把house_list先转化为pandas的DataFrame,然后DataFrame转化为excel,最后通过time.process_time() 函数打印程序运行的总时间。
import time
import pandas as pd
class XiamenhousePipeline(object):
    house_list = []

    def process_item(self, item, spider):
        self.house_list.append(dict(item))
        return item

    def close_spider(self, spider):
        df = pd.DataFrame(self.house_list)
        df.to_excel("厦门房价数据(房天下版).xlsx",columns=[k for k in self.house_list[0].keys()])
        print("爬虫程序共运行{}秒".format(time.process_time()))
  1. 编写工程文件夹中settings.py文件
    删除掉了文件中自带的注释内容,真正起作用的是下面这些代码。
BOT_NAME = 'XiamenHouse'
SPIDER_MODULES = ['XiamenHouse.spiders']
NEWSPIDER_MODULE = 'XiamenHouse.spiders'
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36'
ROBOTSTXT_OBEY = False
CONCURRENT_REQUESTS = 96
ITEM_PIPELINES = {
   'XiamenHouse.pipelines.XiamenhousePipeline': 300,
}

9.在工程文件夹下的任意一级目录在cmd或PowerShell中运行命令scrapy crawl house启动爬虫程序,运行程序产生的excel截图如下。

img_02d91a552d92b82e11aaeaf60e9962b4.png
产生的excel截图.png

提示:

  1. 按照上述步骤正确进行,能够获取房天下网站厦门房产的全部信息,本文作者在2018年6月17日的测试结果是共爬取26332条房价信息,总共用时1363秒,即22分43秒。平均爬取速度为19.32条/秒,1159条/分。
  2. 确保程序能够正确运行,只需要完全复制上述4个文件即可,整个工程已经上传github,链接:
    https://github.com/StevenLei2017/XiamenHouse
  3. 自己编写代码,进行测试的时候,可以修改下面代码减少运行时间。
for region in list(region_dict.keys()):
        for price in list(price_dict.keys()):
            url = "http://esf.xm.fang.com/{}/{}/".format(region_dict[region],price_dict[price])
            start_urls.append(url)

改为

for region in list(region_dict.keys())[:1]:
        for price in list(price_dict.keys())[:1]:
            url = "http://esf.xm.fang.com/{}/{}/".format(region_dict[region],price_dict[price])
            start_urls.append(url)
目录
相关文章
|
20天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
63 6
|
1月前
|
数据采集 中间件 开发者
Scrapy爬虫框架-自定义中间件
Scrapy爬虫框架-自定义中间件
|
1月前
|
数据采集 中间件 Python
Scrapy爬虫框架-通过Cookies模拟自动登录
Scrapy爬虫框架-通过Cookies模拟自动登录
|
21天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
47 4
|
1月前
|
数据采集 中间件 数据挖掘
Scrapy 爬虫框架(一)
Scrapy 爬虫框架(一)
|
1月前
|
数据采集 XML 前端开发
Scrapy 爬虫框架(二)
Scrapy 爬虫框架(二)
|
3月前
|
数据采集 存储 XML
Scrapy框架实现数据采集的详细步骤
本文介绍了使用Scrapy框架从宁波大学经济学院网站爬取新闻或公告详情页内容的过程,包括创建Scrapy项目、编写爬虫规则、提取所需信息,并最终将数据存储到Excel文件中的方法和步骤。
Scrapy框架实现数据采集的详细步骤
|
3月前
|
数据采集 中间件 调度
Scrapy 爬虫框架的基本使用
Scrapy 爬虫框架的基本使用
|
3月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
207 6
|
3月前
|
存储 中间件 数据处理
深入解读 Scrapy 框架原理与源码
深入解读 Scrapy 框架原理与源码
56 1