【干货集锦】大数据计算技术共享计划 — MaxCompute技术公开课第三季

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 2018年5月底,MaxCompute 开启大数据计算技术共享计划技术公开课,不知不觉已经走过了三季,有超过1.3万名用户以及大数据爱好者参与到直播学习中来。阿里巴巴十年磨一剑的大数据计算平台MaxCompute引领越来越多的企业和开发者们走近大数据。

image

2018年5月底,MaxCompute 开启大数据计算技术共享计划技术公开课,不知不觉已经走过了三季,有超过1.3万名用户以及大数据爱好者参与到直播学习中来。阿里巴巴十年磨一剑的大数据计算平台MaxCompute引领越来越多的企业和开发者们走近大数据。因为计算的价值远不止于计算本身,而是可以带给我们更多洞察和更强驱动。

来吧~一起看看第三季的技术干货有哪些?这里就是第三季全家桶,快往下看吧~

如果你期待有下一季直播,欢迎在本贴留言,我们希望给出的刚好是你想要~

第三季技术干货


1、MaxCompute2.0新功能介绍 — 9月4日 秋鹏 阿里巴巴计算平台 高级技术专家
摘要:介绍MaxCompute全新的SQL 2.0引擎在编译器,优化器,运行时提供的新技术实现高性能与低成本,非结构化数据处理框架与生态连接能力等内容。

2、MaxCompute2.0外表对接异构存储源和支持非结构化数据介绍 — 9月11日 惠岸 阿里巴巴计算平台 高级技术专家
摘要:详细分享MaxCompute2.0通过外表对接异构存储源和支持非结构化数据的功能介绍和常见问题。

3、MaxCompute计算长尾问题优化 — 9月18日 云奉 阿里云 售后技术工程师
摘要:长尾问题是分布式计算里最常见的问题之一,也是典型的疑难杂症。究其原因,是因为数据分布不均,导致各个节点的工作量不同,整个任务就需要等最慢的节点完成才能完成。本次主题会就平时工作中遇到的一些典型的长尾问题的场景及其解法做一些分享。

4、MaxCompute SQL计算成本调优以及优化方法 — 9月25日 起飞 阿里巴巴计算平台 技术专家
摘要:介绍如何进行MaxCompute SQL计算成本调优以及优化方法,帮您提高性能的同时降低成本。

欢迎在本贴下留言下一季有关大数据计算的直播内容需求。

推荐阅读>>>

欢迎对大数据感兴趣的开发者们关注MaxCompute云栖社区公众号后续动态,或扫码加入MaxCompute开发者钉钉交流群,与更多大数据爱好者互动交流。

image

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
5天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
25 2
|
24天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
84 4
|
7天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
1月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
90 1
|
7天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
10天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
24 3
|
10天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
39 2
|
13天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
45 2
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1

相关产品

  • 云原生大数据计算服务 MaxCompute