Python学习,多进程了解一下!学爬虫不会用多进程能行吗?

简介: python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。

python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程。Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到 并发执行的转换

本来想写多线程的,但是演示效果并不是很好,就改成进程了。

其实多进程没有我们想象的那么难,用几个小例子给大家分享一下!

目录

  • 多进程的多种实现方法及效果演示:这段将通过几个小脚本实现多进程的效果
  • 一个小爬虫实例,通过运行时间来查看进程对代码速度的影响

多进程

首先我们先做一个小脚本,就用turtle画4个同心圆吧!这样在演示多进程的时候比较直观。代码如下:

import turtle

def cir(n,m):
    turtle.penup()
    turtle.goto(n)
    turtle.pendown()
    turtle.circle(m)
    time.sleep(1)
def runn(lis1,lis2):
    for n, m in zip(lis1,lis2):
        cir(n,m)
if __name__ == '__main__':
    nn = [(0,-200),(0,-150),(0,-100),(0,-50)]
    mm = [200,150,100,50]
    runn(nn,mm)

这段代码,实现了画4个同心圆的效果,如果用多进程的话,我们稍微该写一下,将runn()函数替换下面的代码

from multiprocessing import Process,Pool

for i in range(4):
    Process(target=runn,args=(nn,mm)).start()

这里,启动4个进程,同时画圆,给个图大家感受一下!

可以看到,这里直接生成4个画板同时画同心圆。如果还要在加进程的话,可以用pool进程池,注意pool有2个方法,建议用非阻塞的p.apply_async不要用阻塞的p.apply方法,p.apply_async会由系统自行判断并运行,比如指定4个进程运行5个任务,那么会在某一个进程运行完毕的同时自动开始第5个任务,而阻塞的p.apply方法会一次只运行一个进程。

然后就是记得close()进程池,并用p.join()等待所有进程完成!相关代码如下

    p = Pool(9)
    for i in range(9):
        p.apply_async(runn,(nn,mm))#非阻塞
        #p.apply(runn,(nn,mm))#阻塞
    p.close()
    p.join()

Pool()里面不带参数会自动适应电脑本身内核数量,这里我设置9个进程同时进行!来看看效果

可以看到,同时进行了9个画图的进程,但是同样的,有明显的卡顿感!当然,我们也可以用map函数来写多进程,先修改下代码

def cir(m):
    turtle.penup()
    turtle.goto(m[0])
    turtle.pendown()
    turtle.circle(m[1])
    time.sleep(14)
if __name__ == '__main__':
    nn = [(0, -200), (0, -150), (0, -100), (0, -50)]
    mm = [200, 150, 100, 50]
    mn = [(x,y) for x,y in zip(nn,mm)]
    p = Pool(3)
    p.map(cir,mn)

这次不画4个同心圆了,我们让它4个进程各画一个圆,来看看效果

为了演示效果,多加了点间隔时间,并把cir函数的参数改为1个,这样便于生成元组列表!可以看到,有了明显的卡顿,电脑不好,大家看看效果就行了

写个简单的多进程爬虫

做一个小爬虫,加入运行时间,先上一个不使用进程的代码:

import requests
from lxml import etree
import time
from multiprocessing import Process,Pool

def main(url):
    time.sleep(1)
    html = requests.get(url)
    html.encoding = 'gb2312'
    data = etree.HTML(html.text)
    title = data.xpath('//a[@class="ulink"]/text()')
    summary = data.xpath('//td[@colspan="2"]/text()')
    urls = data.xpath('//a[@class="ulink"]/@href')
    for t,s,u in zip(title,summary,urls):
        print(t)
        print('【url:】http://www.dytt8.net'+u)
        print('【简介】>>>>>>>'+s)

if __name__ == '__main__':
    start = time.time()
    url = 'http://www.dytt8.net/html/gndy/dyzz/'
    pg_url = [url+'list_23_{}.html'.format(str(x)) for x in range(1,10)]
    for pg_u in pg_url:
        main(pg_u)
    end = time.time()
    print("共计用时%.4f秒"%(end-start))

在修改下多进程,直接修改最后几行行代码即可

    pg_url = [url+'list_23_{}.html'.format(str(x)) for x in range(1,10)]
    # for pg_u in pg_url:
    #   main(pg_u)
    p=Pool()
    p.map(main,pg_url)
    end = time.time()
    print("共计用时%.4f秒"%(end-start))

可以看到,速度提高了1倍多,当然,并不是说只能提高一倍,而是我的代码太简单了,只是从网站抓取字符串打印出来,响应速度很快,导致提升的倍率并没有我们想象的那么高,如果大家有兴趣,可以尝试一下,基本上可以提升到进程数的倍率,也就是说,不超过电脑核心数量,且没有其他外因(比如网络响应速度等等)的情况下,用4进程可以提升接近4倍的速度!

后记

在学习的过程中,难免会遇到很高深并且很难理解的知识点,我们可以先尝试去简化理解它,比如多进程,它本身还有进程池、进程间通讯、守护进程、进程类(重写run方法)、进程锁、进程队列、管道、信号量等等功能或知识点,这里都没有涉及,不过这并不影响我们使用简单的多进程写代码!

相关文章
|
20天前
|
数据库 Python
Python学习的自我理解和想法(18)
这是我在学习Python第18天的总结,内容基于B站千锋教育课程,主要涉及面向对象编程的核心概念。包括:`self`关键字的作用、魔术方法的特点与使用(如构造函数`__init__`和析构函数`__del__`)、类属性与对象属性的区别及修改方式。通过学习,我初步理解了如何利用这些机制实现更灵活的程序设计,但深知目前对Python的理解仍较浅显,欢迎指正交流!
|
22天前
|
数据采集 机器学习/深度学习 自然语言处理
Python学习的自我理解和想法(16)
这是我在B站千锋教育课程中学Python的第16天总结,主要学习了`datetime`和`time`模块的常用功能,包括创建日期、时间,获取当前时间及延迟操作等。同时简要介绍了多个方向的补充库,如网络爬虫、数据分析、机器学习等,并讲解了自定义模块的编写与调用方法。因开学时间有限,内容精简,希望对大家有所帮助!如有不足,欢迎指正。
|
20天前
|
Python
Python学习的自我理解和想法(19)
这是一篇关于Python面向对象学习的总结,基于B站千锋教育课程内容编写。主要涵盖三大特性:封装、继承与多态。详细讲解了继承(包括构造函数继承、多继承)及类方法与静态方法的定义、调用及区别。尽管开学后时间有限,但作者仍对所学内容进行了系统梳理,并分享了自己的理解,欢迎指正交流。
|
7天前
|
Python
Python学习的自我理解和想法(26)
这是一篇关于使用Python操作Word文档的学习总结,基于B站千锋教育课程内容编写。主要介绍了通过`python-docx`库在Word中插入列表(有序与无序)、表格,以及读取docx文件的方法。详细展示了代码示例与结果,涵盖创建文档对象、添加数据、设置样式、保存文件等步骤。虽为开学后时间有限下的简要记录,但仍清晰梳理了核心知识点,有助于初学者掌握自动化办公技巧。不足之处欢迎指正!
|
18天前
|
数据采集 数据挖掘 Python
Python学习的自我理解和想法(22)
本文记录了作者学习Python第22天的内容——正则表达式,基于B站千锋教育课程。文章简要介绍了正则表达式的概念、特点及使用场景(如爬虫、数据清洗等),并通过示例解析了`re.search()`、`re.match()`、拆分、替换和匹配中文等基本语法。正则表达式是文本处理的重要工具,尽管入门较难,但功能强大。作者表示后续会深入讲解其应用,并强调学好正则对爬虫学习的帮助。因时间有限,内容为入门概述,不足之处敬请谅解。
|
14天前
|
索引 Python
Python学习的自我理解和想法(24)
本文记录了学习Python操作Excel的第24天内容,基于B站千锋教育课程。主要介绍openpyxl插件的使用,包括安装、读取与写入Excel文件、插入图表等操作。具体内容涵盖加载工作簿、获取单元格数据、创建和保存工作表,以及通过图表展示数据。因开学时间有限,文章简要概述了各步骤代码实现,适合初学者参考学习。如有不足之处,欢迎指正!
|
20天前
|
设计模式 数据库 Python
Python学习的自我理解和想法(20)
这是我在B站千锋教育课程中学习Python第20天的总结,主要涉及面向对象编程的核心概念。内容包括:私有属性与私有方法的定义、语法及调用方式;多态的含义与实现,强调父类引用指向子类对象的特点;单例设计模式的定义、应用场景及实现步骤。通过学习,我掌握了如何在类中保护数据(私有化)、实现灵活的方法重写(多态)以及确保单一实例(单例模式)。由于开学时间有限,内容简明扼要,如有不足之处,欢迎指正!
|
11天前
|
Python
Python学习的自我理解和想法(25)
这是一篇关于Python操作Word文档(docx)的教程总结,基于B站千锋教育课程学习(非原创代码)。主要内容包括:1) docx库插件安装;2) 创建与编辑Word文档,如添加标题、段落、设置字体样式及保存;3) 向新或现有Word文档插入图片。通过简单示例展示了如何高效使用python-docx库完成文档操作。因开学时间有限,内容精简,后续将更新列表和表格相关内容。欢迎指正交流!
|
18天前
|
Python
Python学习的自我理解和想法(23)
本文记录了学习Python正则表达式的第23天心得,内容基于B站麦叔课程。文章分为三个部分:1) 正则表达式的七个境界,从固定字符串到内部约束逐步深入;2) 写正则表达式的套路,以座机号码为例解析模式设计;3) 正则表达式语法大全,涵盖字符类别、重复次数、组合模式、位置、分组、标记、特殊字符和替换等知识点。总结中表达了对知识的理解,并欢迎指正。
|
20天前
|
定位技术 Python Windows
Python学习的自我理解和想法(21)
这是一篇关于Python文件操作的学习总结,基于B站千锋教育课程内容整理而成。文章详细介绍了文件操作的基础知识,包括参数(路径、模式、编码)、注意事项(编码一致性、文件关闭)以及具体操作(创建、读取、写入文件)。同时,深入解析了路径的概念,区分绝对路径与相对路径,并通过示例演示两者在实际应用中的差异。此外,还强调了不同模式(如"w"覆盖写入和"a"追加写入)对文件内容的影响。整体内容逻辑清晰,适合初学者掌握Python文件操作的核心技巧。