GBDT回归的原理及Python实现

简介:

提到GBDT回归相信大家应该都不会觉得陌生,本文就GBDT回归的基本原理进行讲解,并手把手、肩并肩地带您实现这一算法。完整实现代码请参考本人的github。

一、原理篇

我们用人话而不是大段的数学公式来讲讲GBDT回归是怎么一回事。

1.1 温故知新
回归树是GBDT的基础,之前的一篇文章曾经讲过回归树的原理和实现。链接如下:

回归树的原理及Python实现

1.2 预测年龄
仍然以预测同事年龄来举例,从《回归树》那篇文章中我们可以知道,如果需要通过一个常量来预测同事的年龄,平均值是最佳选择之一。

1.3 年龄的残差
我们不妨假设同事的年龄分别为5岁、6岁、7岁,那么同事的平均年龄就是6岁。所以我们用6岁这个常量来预测同事的年龄,即[6, 6, 6]。每个同事年龄的残差 = 年龄 - 预测值 = [5, 6, 7] - [6, 6, 6],所以残差为[-1, 0, 1]

1.4 预测年龄的残差
为了让模型更加准确,其中一个思路是让残差变小。如何减少残差呢?我们不妨对残差建立一颗回归树,然后预测出准确的残差。假设这棵树预测的残差是[-0.9, 0, 0.9],将上一轮的预测值和这一轮的预测值求和,每个同事的年龄 = [6, 6, 6] + [-0.9, 0, 0.9] = [5.1, 6, 6.9],显然与真实值[5, 6, 7]更加接近了, 年龄的残差此时变为[-0.1, 0, 0.1],预测的准确性得到了提升。

1.5 GBDT
重新整理一下思路,假设我们的预测一共迭代3轮 年龄:[5, 6, 7]

第1轮预测:6, 6, 6

第1轮残差:[-1, 0, 1]

第2轮预测:6, 6, 6 + -0.9, 0, 0.9 = [5.1, 6, 6.9]

第2轮残差:[-0.1, 0, 0.1]

第3轮预测:6, 6, 6 + -0.9, 0, 0.9 + -0.08, 0, 0.07 = [5.02, 6, 6.97]

第3轮残差:[-0.08, 0, 0.03]

看上去残差越来越小,而这种预测方式就是GBDT算法。

1.6 公式推导
看到这里,相信您对GBDT已经有了直观的认识。这么做有什么科学依据么,为什么残差可以越来越小呢?前方小段数学公式低能预警。

0cdf3e510a9cd1fd9c422a3d6ab759c73615214c

因此,我们需要通过用第m-1轮残差的均值来得到函数fm,进而优化函数Fm。而回归树的原理就是通过最佳划分区域的均值来进行预测。所以fm可以选用回归树作为基础模型,将初始值,m-1颗回归树的预测值相加便可以预测y。

二、实现篇

本人用全宇宙最简单的编程语言——Python实现了GBDT回归算法,没有依赖任何第三方库,便于学习和使用。简单说明一下实现过程,更详细的注释请参考本人github上的代码。

2.1 导入回归树类
回归树是我之前已经写好的一个类,在之前的文章详细介绍过,代码请参考:

https://github.com/tushushu/imylu/blob/master/imylu/tree/regression_tree.py
from ..tree.regression_tree import RegressionTree

2.2 创建GradientBoostingBase类
初始化,存储回归树、学习率、初始预测值和变换函数。(注:回归不需要做变换,因此函数的返回值等于参数)


class GradientBoostingBase(object):
def __init__(self):
self.trees = None
self.lr = None
self.init_val = None
self.fn = lambda x: x

2.3 计算初始预测值
初始预测值即y的平均值。


def _get_init_val(self, y):
return sum(y) / len(y)

2.4 计算残差


def _get_residuals(self, y, y_hat):
return [yi - self.fn(y_hat_i) for yi, y_hat_i in zip(y, y_hat)]

2.5 训练模型

训练模型的时候需要注意以下几点: 1. 控制树的最大深度max_depth; 2. 控制分裂时最少的样本量min_samples_split; 3. 训练每一棵回归树的时候要乘以一个学习率lr,防止模型过拟合; 4. 对样本进行抽样的时候要采用有放回的抽样方式。


def fit(self, X, y, n_estimators, lr, max_depth, min_samples_split, subsample=None):
self.init_val = self._get_init_val(y)

n = len(y)
y_hat = [self.init_val] * n
residuals = self._get_residuals(y, y_hat)

self.trees = []
self.lr = lr
for _ in range(n_estimators):
idx = range(n)
if subsample is not None:
k = int(subsample * n)
idx = choices(population=idx, k=k)
X_sub = [X[i] for i in idx]
residuals_sub = [residuals[i] for i in idx]
y_hat_sub = [y_hat[i] for i in idx]

tree = RegressionTree()
tree.fit(X_sub, residuals_sub, max_depth, min_samples_split)

self._update_score(tree, X_sub, y_hat_sub, residuals_sub)

y_hat = [y_hat_i + lr * res_hat_i for y_hat_i,
res_hat_i in zip(y_hat, tree.predict(X))]

residuals = self._get_residuals(y, y_hat)
self.trees.append(tree)

2.6 预测一个样本


def _predict(self, Xi):
return self.fn(self.init_val + sum(self.lr * tree._predict(Xi) for tree in self.trees))

2.7 预测多个样本


def predict(self, X):
return [self._predict(Xi) for Xi in X]

三、效果评估

3.1 main函数

使用著名的波士顿房价数据集,按照7:3的比例拆分为训练集和测试集,训练模型,并统计准确度。


@run_time
def main():
print("Tesing the accuracy of GBDT regressor...")

X, y = load_boston_house_prices()

X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=10)

reg = GradientBoostingRegressor()
reg.fit(X=X_train, y=y_train, n_estimators=4,
lr=0.5, max_depth=2, min_samples_split=2)

get_r2(reg, X_test, y_test)

3.2 效果展示
最终拟合优度0.851,运行时间5.0秒,效果还算不错~

3.3 工具函数
本人自定义了一些工具函数,可以在github上查看

https://github.com/tushushu/imylu/blob/master/imylu/utils.py
● run_time - 测试函数运行时间
● load_boston_house_prices - 加载波士顿房价数据
● train_test_split - 拆分训练集、测试集

● get_r2 - 计算拟合优度

四、总结

GBDT回归的原理:平均值加回归树

GBDT回归的实现:加加减减for循环


原文发布时间为:2018-09-7

本文作者:xxx

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”。

相关文章
|
11天前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
155 0
机器学习/深度学习 算法 自动驾驶
113 0
|
24天前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
309 2
|
26天前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
87 0
|
29天前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
257 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
1月前
|
数据采集 消息中间件 并行计算
Python多线程与多进程性能对比:从原理到实战的深度解析
在Python编程中,多线程与多进程是提升并发性能的关键手段。本文通过实验数据、代码示例和通俗比喻,深入解析两者在不同任务类型下的性能表现,帮助开发者科学选择并发策略,优化程序效率。
110 1
|
1月前
|
数据采集 Web App开发 JSON
Python爬虫基本原理与HTTP协议详解:从入门到实践
本文介绍了Python爬虫的核心知识,涵盖HTTP协议基础、请求与响应流程、常用库(如requests、BeautifulSoup)、反爬应对策略及实战案例(如爬取豆瓣电影Top250),帮助读者系统掌握数据采集技能。
180 0
|
2月前
|
存储 数据安全/隐私保护 开发者
Python深浅拷贝全解析:从原理到实战的避坑指南
在Python开发中,深浅拷贝是处理对象复制的关键概念。直接赋值仅复制引用,修改副本会影响原始数据。浅拷贝(如切片、copy方法)创建新容器但共享嵌套对象,适用于单层结构或需共享子对象的场景;而深拷贝(copy.deepcopy)递归复制所有层级,确保完全独立,适合嵌套结构或多线程环境。本文详解二者原理、实现方式及性能考量,帮助开发者根据实际需求选择合适的拷贝策略,避免数据污染与性能浪费。
207 1
|
2月前
|
传感器 算法 数据挖掘
Python时间序列平滑技术完全指南:6种主流方法原理与实战应用
时间序列数据分析中,噪声干扰普遍存在,影响趋势提取。本文系统解析六种常用平滑技术——移动平均、EMA、Savitzky-Golay滤波器、LOESS回归、高斯滤波与卡尔曼滤波,从原理、参数配置、适用场景及优缺点多角度对比,并引入RPR指标量化平滑效果,助力方法选择与优化。
480 0
|
3月前
|
数据采集 网络协议 前端开发
Python多线程爬虫模板:从原理到实战的完整指南
多线程爬虫通过并发请求大幅提升数据采集效率,适用于大规模网页抓取。本文详解其原理与实现,涵盖任务队列、线程池、会话保持、异常处理、反爬对抗等核心技术,并提供可扩展的Python模板代码,助力高效稳定的数据采集实践。
188 0

推荐镜像

更多