Python编程异步爬虫——协程的基本原理(二)

简介: Python编程异步爬虫——协程的基本原理(二)

接上文 Python编程异步爬虫——协程的基本原理(一)https://developer.aliyun.com/article/1620696

多任务协程
如果想执行多次请求,应该怎么办?可以定义一个task列表,然后使用asyncio包中的wait方法执行,如下所示:

import asyncio
import requests

async def request():
    url = 'https://www.baidu.com'
    status = requests.get(url)
    return status

tasks = [asyncio.ensure_future(request()) for _ in range(5)]
print('Tasks:', tasks)

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

for task in tasks:
    print('Task Result:', task.result())

运行结果如下:
Tasks: [<Task pending name='Task-1' coro=<request() running at /Users/bruce_liu/PycharmProjects/崔庆才--爬虫/6章异步爬虫/多任务协程.py:5>>, <Task pending name='Task-2' coro=<request() running at /Users/bruce_liu/PycharmProjects/崔庆才--爬虫/6章异步爬虫/多任务协程.py:5>>, <Task pending name='Task-3' coro=<request() running at /Users/bruce_liu/PycharmProjects/崔庆才--爬虫/6章异步爬虫/多任务协程.py:5>>, <Task pending name='Task-4' coro=<request() running at /Users/bruce_liu/PycharmProjects/崔庆才--爬虫/6章异步爬虫/多任务协程.py:5>>, <Task pending name='Task-5' coro=<request() running at /Users/bruce_liu/PycharmProjects/崔庆才--爬虫/6章异步爬虫/多任务协程.py:5>>]
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>

协程实现
协程在解决IO密集型任务方面的优势,耗时等待一般都是IO操作,例如文件读取、网络请求等。协程在处理这种操作时是有很大优势的,当遇到需要等待的情况时,程序可以暂时挂起,转而执行其他操作,避免浪费时间。
https://www.httpbin.org/delay/5为例,体验一下协程的效果。示例代码如下:

import asyncio
import requests
import time

start = time.time()

async def request():
    url = 'https://www.httpbin.org/delay/5'
    print('waiting for', url)
    response = requests.get(url)
    print('Get response from', url, 'response', response)

tasks = [asyncio.ensure_future(request()) for _ in range(10)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print('Cost time:', end - start)

运行结果如下:
waiting for https://www.httpbin.org/delay/5
Get response from https://www.httpbin.org/delay/5 response <Response [200]>
waiting for https://www.httpbin.org/delay/5
Get response from https://www.httpbin.org/delay/5 response <Response [200]>
waiting for https://www.httpbin.org/delay/5
Get response from https://www.httpbin.org/delay/5 response <Response [200]>
...
waiting for https://www.httpbin.org/delay/5
Get response from https://www.httpbin.org/delay/5 response <Response [200]>
waiting for https://www.httpbin.org/delay/5
Get response from https://www.httpbin.org/delay/5 response <Response [200]>
waiting for https://www.httpbin.org/delay/5
Get response from https://www.httpbin.org/delay/5 response <Response [200]>
Cost time: 63.61974787712097

可以发现,与正常的顺序请求没有啥区别。那么异步处理的优势呢?要实现异步处理,先得有挂起操作,当一个任务需要等待IO结果的时候,可以挂起当前任务,转而执行其他任务,这样才能充分利用好资源。

使用aiohttp
aiohttp是一个支持异步请求的库,它和asyncio配合使用,可以使我们非常方便地实现异步请求操作。
aiohttp分为两部分:一部分是Client,一部分是Server。
下面我们将aiohttp投入使用,将代码改成如下:

import asyncio
import aiohttp
import time

start = time.time()

async def get(url):
    session = aiohttp.ClientSession()
    response = await session.get(url)
    await response.text()
    await session.close()
    return response

async def request():
    url = 'https://www.httpbin.org/delay/5'
    print('Waiting for', url)
    response = await get(url)
    print('Get response from', url, 'response', response)

tasks = [asyncio.ensure_future(request()) for _ in range(10)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))

end = time.time()
print('Cost time:', end - start)

运行结果如下:
Waiting for https://www.httpbin.org/delay/5
Waiting for https://www.httpbin.org/delay/5
Waiting for https://www.httpbin.org/delay/5
Waiting for https://www.httpbin.org/delay/5
Waiting for https://www.httpbin.org/delay/5
Waiting for https://www.httpbin.org/delay/5
...
Get response from https://www.httpbin.org/delay/5 response <ClientResponse(https://www.httpbin.org/delay/5) [200 OK]>
<CIMultiDictProxy('Date': 'Sat, 23 Mar 2024 13:42:05 GMT', 'Content-Type': 'application/json', 'Content-Length': '367', 'Connection': 'keep-alive', 'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true')>

Get response from https://www.httpbin.org/delay/5 response <ClientResponse(https://www.httpbin.org/delay/5) [200 OK]>
<CIMultiDictProxy('Date': 'Sat, 23 Mar 2024 13:42:05 GMT', 'Content-Type': 'application/json', 'Content-Length': '367', 'Connection': 'keep-alive', 'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true')>
...
Get response from https://www.httpbin.org/delay/5 response <ClientResponse(https://www.httpbin.org/delay/5) [200 OK]>
<CIMultiDictProxy('Date': 'Sat, 23 Mar 2024 13:42:05 GMT', 'Content-Type': 'application/json', 'Content-Length': '367', 'Connection': 'keep-alive', 'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true')>

Get response from https://www.httpbin.org/delay/5 response <ClientResponse(https://www.httpbin.org/delay/5) [200 OK]>
<CIMultiDictProxy('Date': 'Sat, 23 Mar 2024 13:42:05 GMT', 'Content-Type': 'application/json', 'Content-Length': '367', 'Connection': 'keep-alive', 'Server': 'gunicorn/19.9.0', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true')>

Cost time: 6.868626832962036

这里将请求库由requests改成了aiohttp,利用aiohttp库里ClientSession类的get方法进行请求。

测试一下并发量分别为1、3、5、10、….、500时的耗时情况,代码如下:

import asyncio
import aiohttp
import time

def test(number):
    start = time.time()

    async def get(url):
        session = aiohttp.ClientSession()
        response = await session.get(url)
        await response.text()
        await session.close()
        return response

    async def request():
        url = 'https://www.baidu.com/'
        await get(url)

    tasks = [asyncio.ensure_future(request()) for _ in range(number)]
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait(tasks))

    end = time.time()
    print('Number:', number, 'Cost time:', end - start)

for number in [1, 3, 5, 10, 15, 30, 50, 75, 100, 200, 500]:
    test(number)

 运行结果如下:
Number: 1 Cost time: 0.23929095268249512
Number: 3 Cost time: 0.19086170196533203
Number: 5 Cost time: 0.20035600662231445
Number: 10 Cost time: 0.21305394172668457
Number: 15 Cost time: 0.25495195388793945
Number: 30 Cost time: 0.769071102142334
Number: 50 Cost time: 0.3470029830932617
Number: 75 Cost time: 0.4492309093475342
Number: 100 Cost time: 0.586918830871582
Number: 200 Cost time: 1.0910720825195312
Number: 500 Cost time: 2.4768006801605225
相关文章
|
3月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
659 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
1月前
|
数据采集 安全 网络安全
使用aiohttp实现异步HTTPS爬虫的SSL优化
使用aiohttp实现异步HTTPS爬虫的SSL优化
164 81
|
22天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
56 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
1月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
70 11
|
3月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
117 28
|
3月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
58 4
|
3月前
|
Java API Docker
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
|
安全 Unix Shell
Python 异步: 在非阻塞子进程中运行命令(19)
Python 异步: 在非阻塞子进程中运行命令(19)
1004 0
|
调度 Python
Python3的原生协程(Async/Await)和Tornado异步非阻塞
我们知道在程序在执行 IO 密集型任务的时候,程序会因为等待 IO 而阻塞,而协程作为一种用户态的轻量级线程,可以帮我们解决这个问题。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存,在调度回来的时候,恢复先前保存的寄存器上下文和栈。因此协程能保留上一次调用时的状态,即所有局部状态的一个特定组合
Python3的原生协程(Async/Await)和Tornado异步非阻塞
|
网络协议 网络安全 数据安全/隐私保护
Python 异步: 非阻塞流(20)
Python 异步: 非阻塞流(20)

推荐镜像

更多