Python爬虫爬取网易云音乐全部评论

简介: beautiful now.png思路整理访问网易云音乐单曲播放界面,我们可以看到当我们翻页的时候网址是没有变化的,这时候我们大致可以确定评论是通过post形式加载的;.2.接下来就打开控制台找我们要的评论藏在哪里就好了。
img_7711508f8984ed2df5c8b451b2e63a9a.png
beautiful now.png
思路整理
  1. 访问网易云音乐单曲播放界面,我们可以看到当我们翻页的时候网址是没有变化的,这时候我们大致可以确定评论是通过post形式加载的;
    img_be061d6087b08b72c4ae5c2ffe5fa13f.png
    .

    2.接下来就打开控制台找我们要的评论藏在哪里就好了。
    我们在http://music.163.com/weapi/v1/resource/comments/R_SO_4_32019002?csrf_token=发现了我们要的评论,包括热门评论,我们注意看下R_SO_4_后面的数字,其实就是每首歌的id,如果我们想一次性爬取多首歌曲的评论的话,可以通过每次传入歌曲id来实现;
img_b50f9a99554b9cdae1271a8c9abb43c5.png
image.png
  1. 我们接下来看下需要post的数据,有两个值params和encSecKey,本以为就是页码之类的,看到这两个值我其实是懵逼的,很显然是加密过了的,不过我不知道他是怎么加密的,后面在知乎上找到了解决方法,各位可以去知乎看看,我就不赘述了,因为我也没看明白……;
img_9d777047194683c3b8b5ec32f6223fc1.png
image.png

代码部分

加密

前文说了,这部分参考了知乎的一位答主,各位可以去知乎看看,我这边只是稍微改了下就拿来用了,点这里跳转

first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}'
second_param = "010001"
third_param = "00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7"
forth_param = "0CoJUm6Qyw8W8jud"

def get_params(i):
    if i == 0:
        first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}'
    else:
        offset =str(i*20)
        first_param = '{rid:"", offset:"%s", total:"%s", limit:"20", csrf_token:""}'%(offset,'flase')
    iv = "0102030405060708"
    first_key = forth_param
    second_key = 16 * 'F'
    h_encText = AES_encrypt(first_param, first_key, iv)
    h_encText = AES_encrypt(h_encText, second_key, iv)
    return h_encText


def get_encSecKey():
    encSecKey = "257348aecb5e556c066de214e531faadd1c55d814f9be95fd06d6bff9f4c7a41f831f6394d5a3fd2e3881736d94a02ca919d952872e7d0a50ebfa1769a7a62d512f5f1ca21aec60bc3819a9c3ffca5eca9a0dba6d6f7249b06f5965ecfff3695b54e1c28f3f624750ed39e7de08fc8493242e26dbc4484a01c76f739e135637c"
    return encSecKey
    

def AES_encrypt(text, key, iv):
    pad = 16 - len(text) % 16
    text = text + pad * chr(pad)
    encryptor = AES.new(key, AES.MODE_CBC, iv)
    encrypt_text = encryptor.encrypt(text)
    encrypt_text = base64.b64encode(encrypt_text)
    return encrypt_text
获取页码以及评论

获取页码数是为了加入循环获取每页的评论,代码如下;

def get_json(url, params, encSecKey):
    data = {
         "params": params,
         "encSecKey": encSecKey
    }
    response = requests.post(url, headers=headers, data=data,proxies = proxies)
    return response.content

def get_page(url):
    params = get_params(0);
    encSecKey = get_encSecKey();
    json_text = get_json(url, params, encSecKey)
    json_dict = json.loads(json_text)
    total_comment = json_dict['total']
    page=(total_comment/20)+1
    print '***查询到评论共计%d条,%d页***'%(total_comment,page)
    return page

最后就是把json数据按照你想要的保存下来就好了,如果只想要热门评论的话,把comments改成hotcomments就好了。
完整代码如下:

#coding = utf-8
from Crypto.Cipher import AES
import base64
import requests
import json
import time
import pandas as pd
import random

headers = {
    'Referer': 'http://music.163.com/song?id=531051217',
    'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36',
    'Cookie': 'JSESSIONID-WYYY=%5CuiUi%5C%2FYs%2FcJcoQ5xd3cBhaHw0rEfHkss1s%2FCfr92IKyg2hJOrJquv3fiG2%2Fn9GZS%2FuDH8PY81zGquF4GIAVB9eYSdKJM1W6E2i1KFg9%5CuZ4xU6VdPCGwp4KOUZQQiWSlRT%2F1r07OmIBn7yYVYN%2BM2MAalUQnoYcyskaXN%5CPo1AOyVVV%3A1516866368046; _iuqxldmzr_=32; _ntes_nnid=7e2e27f69781e78f2c610fa92434946b,1516864568068; _ntes_nuid=7e2e27f69781e78f2c610fa92434946b; __utma=94650624.470888446.1516864569.1516864569.1516864569.1; __utmc=94650624; __utmz=94650624.1516864569.1.1.utmcsr=baidu|utmccn=(organic)|utmcmd=organic; __utmb=94650624.8.10.1516864569'
}
proxies = {'http':'http://221.200.107.118','https':'http://116.2.25.251'}



first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}'
second_param = "010001"
third_param = "00e0b509f6259df8642dbc35662901477df22677ec152b5ff68ace615bb7b725152b3ab17a876aea8a5aa76d2e417629ec4ee341f56135fccf695280104e0312ecbda92557c93870114af6c9d05c4f7f0c3685b7a46bee255932575cce10b424d813cfe4875d3e82047b97ddef52741d546b8e289dc6935b3ece0462db0a22b8e7"
forth_param = "0CoJUm6Qyw8W8jud"

def get_params(i):
    if i == 0:
        first_param = '{rid:"", offset:"0", total:"true", limit:"20", csrf_token:""}'
    else:
        offset =str(i*20)
        first_param = '{rid:"", offset:"%s", total:"%s", limit:"20", csrf_token:""}'%(offset,'flase')
    iv = "0102030405060708"
    first_key = forth_param
    second_key = 16 * 'F'
    h_encText = AES_encrypt(first_param, first_key, iv)
    h_encText = AES_encrypt(h_encText, second_key, iv)
    return h_encText


def get_encSecKey():
    encSecKey = "257348aecb5e556c066de214e531faadd1c55d814f9be95fd06d6bff9f4c7a41f831f6394d5a3fd2e3881736d94a02ca919d952872e7d0a50ebfa1769a7a62d512f5f1ca21aec60bc3819a9c3ffca5eca9a0dba6d6f7249b06f5965ecfff3695b54e1c28f3f624750ed39e7de08fc8493242e26dbc4484a01c76f739e135637c"
    return encSecKey
    

def AES_encrypt(text, key, iv):
    pad = 16 - len(text) % 16
    text = text + pad * chr(pad)
    encryptor = AES.new(key, AES.MODE_CBC, iv)
    encrypt_text = encryptor.encrypt(text)
    encrypt_text = base64.b64encode(encrypt_text)
    return encrypt_text


def get_json(url, params, encSecKey):
    data = {
         "params": params,
         "encSecKey": encSecKey
    }
    response = requests.post(url, headers=headers, data=data,proxies = proxies)
    return response.content

def get_page(url):
    params = get_params(0);
    encSecKey = get_encSecKey();
    json_text = get_json(url, params, encSecKey)
    json_dict = json.loads(json_text)
    total_comment = json_dict['total']
    page=(total_comment/20)+1
    print '***查询到评论共计%d条,%d页***'%(total_comment,page)
    return page



if __name__ == "__main__":
    start_time = time.time()
    url = "http://music.163.com/weapi/v1/resource/comments/R_SO_4_32019002?csrf_token="
    page = get_page(url)
    for i in range(page):
        params = get_params(i);
        encSecKey = get_encSecKey();
        json_text = get_json(url, params, encSecKey)
        json_dict = json.loads(str(json_text))['comments']
        for t in list(range(len(json_dict))):
            if t == 0:
                rdata=pd.DataFrame(pd.Series(data=json_dict[t])).T
            else:
                rdata=pd.concat([rdata,pd.DataFrame(pd.Series(data=json_dict[t])).T])
        if i == 0:
            commentdata=rdata
        else:
            commentdata=pd.concat([commentdata,rdata])           
        print('***正在保存第%d页***'%(i+1))
        time.sleep(random.uniform(0.2,0.5)) 
    commentdata.to_excel('NetEase_Music_Spider.xls',sheet_name='sheet1')
    end_time = time.time()
    print "程序耗时%f秒." % (end_time - start_time)
    print '***NetEase_Music_Spider@Awesome_Tang***'

本次爬的是最近一直循环的<beautiful now--Zedd/Jon Bellion>,评论共计37429条,1872页,程序耗时1036.046966秒,接近20分钟。


Notes

各位爬的时候一定要使用代理IP,我后面准备爬周董最近的新歌<等你下课>的评论的,爬到5000多页也就是差不多10W条的时候,被封IP了,导致我们整个公司的网络都一段时间内不能访问网易云音乐的评论,包括手机连Wi-Fi...

img_01723493df20ae3327aedad475be7b23.png
image.png


Peace~

目录
相关文章
|
1月前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
114 6
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
240 4
|
4月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。
|
2月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
213 66
|
1月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
1月前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
1月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
90 4
|
2月前
|
数据采集 JavaScript 前端开发
JavaScript逆向爬虫——使用Python模拟执行JavaScript
JavaScript逆向爬虫——使用Python模拟执行JavaScript
48 2
|
3月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
77 3