OpenCV 通过 Features2D 和 Homography 查找已知对象

简介: OpenCV 通过 Features2D 和 Homography 查找已知对象 目标 本文中你将学会: 使用 findHomography 函数来查找匹配关键点之间的转换使用 perspectiveTransform 来映射点 代码 完整的代码可从这里 下载 #include <stdio.h>#in


目标

本文中你将学会:

代码

完整的代码可从这里 下载

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"

using namespace cv;

void readme();

/** @function main */
int main( int argc, char** argv )
{
  if( argc != 3 )
  { readme(); return -1; }

  Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
  Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );

  if( !img_object.data || !img_scene.data )
  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

  //-- Step 1: Detect the keypoints using SURF Detector
  int minHessian = 400;

  SurfFeatureDetector detector( minHessian );

  std::vector<KeyPoint> keypoints_object, keypoints_scene;

  detector.detect( img_object, keypoints_object );
  detector.detect( img_scene, keypoints_scene );

  //-- Step 2: Calculate descriptors (feature vectors)
  SurfDescriptorExtractor extractor;

  Mat descriptors_object, descriptors_scene;

  extractor.compute( img_object, keypoints_object, descriptors_object );
  extractor.compute( img_scene, keypoints_scene, descriptors_scene );

  //-- Step 3: Matching descriptor vectors using FLANN matcher
  FlannBasedMatcher matcher;
  std::vector< DMatch > matches;
  matcher.match( descriptors_object, descriptors_scene, matches );

  double max_dist = 0; double min_dist = 100;

  //-- Quick calculation of max and min distances between keypoints
  for( int i = 0; i < descriptors_object.rows; i++ )
  { double dist = matches[i].distance;
    if( dist < min_dist ) min_dist = dist;
    if( dist > max_dist ) max_dist = dist;
  }

  printf("-- Max dist : %f \n", max_dist );
  printf("-- Min dist : %f \n", min_dist );

  //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
  std::vector< DMatch > good_matches;

  for( int i = 0; i < descriptors_object.rows; i++ )
  { if( matches[i].distance < 3*min_dist )
     { good_matches.push_back( matches[i]); }
  }

  Mat img_matches;
  drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
               good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
               vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );

  //-- Localize the object
  std::vector<Point2f> obj;
  std::vector<Point2f> scene;

  for( int i = 0; i < good_matches.size(); i++ )
  {
    //-- Get the keypoints from the good matches
    obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
    scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
  }

  Mat H = findHomography( obj, scene, CV_RANSAC );

  //-- Get the corners from the image_1 ( the object to be "detected" )
  std::vector<Point2f> obj_corners(4);
  obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
  obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
  std::vector<Point2f> scene_corners(4);

  perspectiveTransform( obj_corners, scene_corners, H);

  //-- Draw lines between the corners (the mapped object in the scene - image_2 )
  line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
  line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
  line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
  line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );

  //-- Show detected matches
  imshow( "Good Matches & Object detection", img_matches );

  waitKey(0);
  return 0;
  }

  /** @function readme */
  void readme()
  { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

结果

下面是检测对象的结果(绿色框内)


目录
相关文章
|
6月前
|
存储 Cloud Native Linux
openCV 图像对象的创建和赋值
openCV 图像对象的创建和赋值
|
Java Linux 计算机视觉
全网首发:Linux自带opencv库的JAVA调用失败/java.lang.UnsatisfiedLinkError:libopencv_ml.so.405: 无法打开共享对象文件
全网首发:Linux自带opencv库的JAVA调用失败/java.lang.UnsatisfiedLinkError:libopencv_ml.so.405: 无法打开共享对象文件
512 0
|
API C语言 计算机视觉
三天学会opencv(三)——Mat对象
三天学会opencv(三)——Mat对象
114 0
三天学会opencv(三)——Mat对象
|
Java Linux 计算机视觉
全网首发:Linux自带opencv库的JAVA调用失败/java.lang.UnsatisfiedLinkError:libopencv_ml.so.405: 无法打开共享对象文件
全网首发:Linux自带opencv库的JAVA调用失败/java.lang.UnsatisfiedLinkError:libopencv_ml.so.405: 无法打开共享对象文件
348 0
|
机器学习/深度学习 数据可视化 计算机视觉
物体检测实战:使用 OpenCV 进行 YOLO 对象检测
物体检测实战:使用 OpenCV 进行 YOLO 对象检测
308 0
物体检测实战:使用 OpenCV 进行 YOLO 对象检测
|
存储 算法 C++
OpenCV 3.1.0中的Mat对象使用
一: Mat介绍          OpenCV刚出来的时候图像加载内存之后的对象是IplImage作为数据对象,里面存储了图像的像素数据和宽、高、位图深度、图像大小、通道数等基本属性。IplImage结构是C语言体系下定义出来的接口,使用它时候最大的问题是要自己负责内存管理,控制内存分配和释放,很容易导致内存问题。
1191 0
|
12天前
|
计算机视觉 Python
轻松掌握opencv的8种图像变换
轻松掌握opencv的8种图像变换
|
13天前
|
算法 计算机视觉
【OpenCV】- 图像修复
【OpenCV】- 图像修复
|
13天前
|
Serverless 计算机视觉
【OpenCV】-图像的矩
【OpenCV】-图像的矩