工作中数据库优化技巧

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 内容整理于网络一、EXPLAIN做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划。EXPLAIN 输出格式EXPLAIN 命令的输出内容大致如下:mysql root@localhost:youdi_auth>...

内容整理于网络

一、EXPLAIN

做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划。

EXPLAIN 输出格式

EXPLAIN 命令的输出内容大致如下:

mysql root@localhost:youdi_auth> explain select * from  auth_user\G;
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | ALL
possible_keys | <null>
key           | <null>
key_len       | <null>
ref           | <null>
rows          | 19
filtered      | 100.0
Extra         | <null>
1 row in set
Time: 0.008s

各列的含义如下:

  • id: SELECT 查询的标识符. 每个 SELECT 都会自动分配一个唯一的标识符.
  • select_type: SELECT 查询的类型.
  • table: 查询的是哪个表
  • partitions: 匹配的分区
  • type: join 类型
  • possible_keys: 此次查询中可能选用的索引
  • key: 此次查询中确切使用到的索引.
  • ref: 哪个字段或常数与 key 一起被使用
  • rows: 显示此查询一共扫描了多少行. 这个是一个估计值.
  • filtered: 表示此查询条件所过滤的数据的百分比
  • extra: 额外的信息

接下来我们来重点看一下比较重要的几个字段.

select_type

select_type 表示了查询的类型, 它的常用取值有:

  • SIMPLE, 表示此查询不包含 UNION 查询或子查询
  • PRIMARY, 表示此查询是最外层的查询
  • UNION, 表示此查询是 UNION 的第二或随后的查询
  • DEPENDENT UNION, UNION 中的第二个或后面的查询语句, 取决于外面的查询
  • UNION RESULT, UNION 的结果
  • SUBQUERY, 子查询中的第一个 SELECT
  • DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

最常见的查询类别应该是 SIMPLE 了, 比如当我们的查询没有子查询, 也没有 UNION 查询时, 那么通常就是 SIMPLE 类型, 例如:

mysql root@localhost:youdi_auth> explain select * from  auth_user where id = 396\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | const
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | const
rows          | 1
filtered      | 100.0
Extra         | <null>
1 row in set
Time: 0.008s

如果我们使用了 UNION 查询, 那么 EXPLAIN 输出 的结果类似如下:

mysql root@localhost:youdi_auth> explain (select * from  auth_user where id in (1,2,3,4)) UNION (select * from auth_user where id in (4,5,6,7,8))\G
***************************[ 1. row ]***************************
id            | 1
select_type   | PRIMARY
table         | auth_user
partitions    | <null>
type          | range
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | <null>
rows          | 4
filtered      | 100.0
Extra         | Using where
***************************[ 2. row ]***************************
id            | 2
select_type   | UNION
table         | auth_user
partitions    | <null>
type          | range
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | <null>
rows          | 5
filtered      | 100.0
Extra         | Using where
***************************[ 3. row ]***************************
id            | <null>
select_type   | UNION RESULT
table         | <union1,2>
partitions    | <null>
type          | ALL
possible_keys | <null>
key           | <null>
key_len       | <null>
ref           | <null>
rows          | <null>
filtered      | <null>
Extra         | Using temporary
3 rows in set
Time: 0.009s

table

表示查询涉及的表或衍生表

type

type 字段比较重要, 它提供了判断查询是否高效的重要依据依据. 通过 type 字段, 我们判断此次查询是 全表扫描 还是 索引扫描等.

type 常用类型

type 常用的取值有:

  • system: 表中只有一条数据. 这个类型是特殊的 const 类型.
  • const: 针对主键或唯一索引的等值查询扫描, 最多只返回一行数据. const 查询速度非常快, 因为它仅仅读取一次即可.
    例如下面的这个查询, 它使用了主键索引, 因此 type 就是 const 类型的.
mysql root@localhost:youdi_auth> explain select * from  auth_user where id = 394\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | const
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | const
rows          | 1
filtered      | 100.0
Extra         | <null>
1 row in set
Time: 0.008s
  • eq_ref: 此类型通常出现在多表的 join 查询, 表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是 =, 查询效率较高. 例如:
mysql root@localhost:youmi_auth> explain select * from auth_user,auth_user_groups where auth_user.id = auth_user_groups.user_id\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user_groups
partitions    | <null>
type          | index
possible_keys | user_group_id
key           | user_group_id
key_len       | 8
ref           | <null>
rows          | 2
filtered      | 100.0
Extra         | Using index
***************************[ 2. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | eq_ref
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | youdi_auth.auth_user_groups.user_id
rows          | 1
filtered      | 100.0
Extra         | <null>
2 rows in set
Time: 0.008s
  • ref: 此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了 最左前缀 规则索引的查询.
    例如下面这个例子中, 就使用到了 ref 类型的查询:
mysql root@localhost:youdi_auth> explain select * from auth_user,auth_user_groups where auth_user.id = auth_user_groups.user_id and auth_user.id = 6\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | const
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | const
rows          | 1
filtered      | 100.0
Extra         | <null>
***************************[ 2. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user_groups
partitions    | <null>
type          | ref
possible_keys | user_group_id
key           | user_group_id
key_len       | 4
ref           | const
rows          | 2
filtered      | 100.0
Extra         | Using index
2 rows in set
Time: 0.008s
  • range: 表示使用索引范围查询, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中.
    typerange 时, 那么 EXPLAIN 输出的 ref 字段为 NULL, 并且 key_len 字段是此次查询中使用到的索引的最长的那个.

例如下面的例子就是一个范围查询:

mysql root@localhost:youmi_auth> explain select * from  auth_user where id between 2 and 400\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | range
possible_keys | PRIMARY
key           | PRIMARY
key_len       | 4
ref           | <null>
rows          | 18
filtered      | 100.0
Extra         | Using where
1 row in set
Time: 0.008s
  • index: 表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.
    index 类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示 Using index.

例如:

mysql root@localhost:youdi_auth> explain select name from  auth_user\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | ALL
possible_keys | <null>
key           | <null>
key_len       | <null>
ref           | <null>
rows          | 19
filtered      | 100.0
Extra         | <null>
1 row in set
Time: 0.008s

上面的例子中, 我们查询的 name 字段恰好是一个索引, 因此我们直接从索引中获取数据就可以满足查询的需求了, 而不需要查询表中的数据. 因此这样的情况下, type 的值是 index, 并且 Extra 的值是 Using index.

  • ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.
    下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.
mysql root@localhost:youdi_auth> explain select name from  auth_user where name='liangchangyou'\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | ALL
possible_keys | <null>
key           | <null>
key_len       | <null>
ref           | <null>
rows          | 19
filtered      | 10.0
Extra         | Using where
1 row in set
Time: 0.008s

type 类型的性能比较

通常来说, 不同的 type 类型的性能关系如下:
ALL < index < range ~ index_merge < ref < eq_ref < const < system
ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.
index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.
后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

possible_keys

possible_keys 表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由 key 字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.
key_len 的计算规则如下:

  • 字符串
    • char(n): n 字节长度
    • varchar(n): 如果是 utf8 编码, 则是 3 *n + 2字节; 如果是 utf8mb4 编码, 则是 4 *n + 2 字节.
  • 数值类型:
    • TINYINT: 1字节
    • SMALLINT: 2字节
    • MEDIUMINT: 3字节
    • INT: 4字节
    • BIGINT: 8字节
  • 时间类型
    • DATE: 3字节
    • TIMESTAMP: 4字节
    • DATETIME: 8字节
  • 字段属性: NULL 属性 占用一个字节. 如果一个字段是 NOT NULL 的, 则没有此属性.

我们来举两个简单的栗子:

mysql root@localhost:youmi_auth> explain select * from auth_user where id > 10 and name = 'liangchangyou' and status = 0\G
***************************[ 1. row ]***************************
id            | 1
select_type   | SIMPLE
table         | auth_user
partitions    | <null>
type          | range
possible_keys | PRIMARY,id-name-status
key           | PRIMARY
key_len       | 4
ref           | <null>
rows          | 12
filtered      | 5.26
Extra         | Using where
1 row in set
Time: 0.007s

上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:

 index `id-name-status` (`id`, `name`, `status`);

不过此查询语句 where id > 10 and name = 'liangchangyou' and status = 0\G 中, 因为先进行 id 的范围查询, 而根据 最左前缀匹配 原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有 id,

上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 id 字段, 因此效率不算高

rows

rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.
这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.

Extra

EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:

  • Using filesort
    当 Extra 中有 Using filesort 时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 Using filesort, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.
  • Using index
    "覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错
  • Using temporary
    查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

二、SQL语句中IN包含的值不应过多

MySQL对于IN做了相应的优化,即将IN中的常量全部存储在一个数组里面,而且这个数组是排好序的。但是如果数值较多,产生的消耗也是比较大的。再例如:select id from t where num in(1,2,3) 对于连续的数值,能用 between 就不要用 in 了;再或者使用连接来替换。

三、SELECT语句务必指明字段名称

SELECT *增加很多不必要的消耗(cpu、io、内存、网络带宽);增加了使用覆盖索引的可能性;当表结构发生改变时,前断也需要更新。所以要求直接在select后面接上字段名。

四、当只需要一条数据的时候,使用limit 1

这是为了使EXPLAIN中type列达到const类型

五、如果排序字段没有用到索引,就尽量少排序

六、如果限制条件中其他字段没有索引,尽量少用or

or两边的字段中,如果有一个不是索引字段,而其他条件也不是索引字段,会造成该查询不走索引的情况。很多时候使用 union all 或者是union(必要的时候)的方式来代替“or”会得到更好的效果

七、尽量用union all代替union

union和union all的差异主要是前者需要将结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的CPU运算,加大资源消耗及延迟。当然,union all的前提条件是两个结果集没有重复数据。

八、不使用ORDER BY RAND()

select id from `dynamic` order by rand() limit 1000;

上面的sql语句,可优化为

select id from `dynamic` t1 join (select rand() * (select max(id) from `dynamic`) as nid) t2 on t1.id > t2.nid limit 1000;

九、区分in和exists, not in和not exists

select * from 表A where id in (select id from 表B)

上面sql语句相当于

select * from 表A where exists(select * from 表B where 表B.id=表A.id)

区分in和exists主要是造成了驱动顺序的改变(这是性能变化的关键),如果是exists,那么以外层表为驱动表,先被访问,如果是IN,那么先执行子查询。所以IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。关于not in和not exists,推荐使用not exists,不仅仅是效率问题,not in可能存在逻辑问题。如何高效的写出一个替代not exists的sql语句?

原sql语句

select colname … from A表 where a.id not in (select b.id from B表)

高效的sql语句

select colname … from A表 Left join B表 on where a.id = b.id where b.id is null

取出的结果集如下图表示,A表不在B表中的数据

十、使用合理的分页方式以提高分页的效率

select id,name from product limit 866613, 20

使用上述sql语句做分页的时候,可能有人会发现,随着表数据量的增加,直接使用limit分页查询会越来越慢。

优化的方法如下:可以取前一页的最大行数的id,然后根据这个最大的id来限制下一页的起点。比如此列中,上一页最大的id是866612。sql可以采用如下的写法:

select id,name from product where id> 866612 limit 20

十一、分段查询

在一些用户选择页面中,可能一些用户选择的时间范围过大,造成查询缓慢。主要的原因是扫描行数过多。这个时候可以通过程序,分段进行查询,循环遍历,将结果合并处理进行展示。

扫描的行数成百万级以上的时候就可以使用分段查询

十二、避免在 where 子句中对字段进行 null 值判断

对于null的判断会导致引擎放弃使用索引而进行全表扫描。

十三、不建议使用%前缀模糊查询

例如LIKE “%name”或者LIKE “%name%”,这种查询会导致索引失效而进行全表扫描。但是可以使用LIKE “name%”。

那如何查询%name%?

虽然给字段添加了索引,但在explain结果果并没有使用


那么如何解决这个问题呢,答案:使用全文索引

在我们查询中经常会用到select id,fnum,fdst from dynamic_201606 where user_name like '%zhangsan%'; 。这样的语句,普通索引是无法满足查询需求的。庆幸的是在MySQL中,有全文索引来帮助我们。

创建全文索引的sql语法是:

ALTER TABLE `dynamic_201606` ADD FULLTEXT INDEX `idx_user_name` (`user_name`);

使用全文索引的sql语句是:

select id,fnum,fdst from dynamic_201606 where match(user_name) against('zhangsan' in boolean mode);

注意:在需要创建全文索引之前,请联系DBA确定能否创建。同时需要注意的是查询语句的写法与普通索引的区别

十四、避免在where子句中对字段进行表达式操作

比如

select user_id,user_project from user_base where age*2=36;

中对字段就行了算术运算,这会造成引擎放弃使用索引,建议改成

select user_id,user_project from user_base where age=36/2;

十五、避免隐式类型转换

where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换,建议先确定where中的参数类型


十六、对于联合索引来说,要遵守最左前缀法则

举列来说索引含有字段id,name,school,可以直接用id字段,也可以id,name这样的顺序,但是name;school都无法使用这个索引。所以在创建联合索引的时候一定要注意索引字段顺序,常用的查询字段放在最前面

十七、必要时可以使用force index来强制查询走某个索引

有的时候MySQL优化器采取它认为合适的索引来检索sql语句,但是可能它所采用的索引并不是我们想要的。这时就可以采用force index来强制优化器使用我们制定的索引。

十八、注意范围查询语句

对于联合索引来说,如果存在范围查询,比如between,>,<等条件时,会造成后面的索引字段失效。

十九、关于JOIN优化

  • LEFT JOIN A表为驱动表
  • INNER JOIN MySQL会自动找出那个数据少的表作用驱动表
  • RIGHT JOIN B表为驱动表

注意:MySQL中没有full join,可以用以下方式来解决

select * from A left join B on B.name = A.name 
where B.name is null
 union all
select * from B;

尽量使用inner join,避免left join

参与联合查询的表至少为2张表,一般都存在大小之分。如果连接方式是inner join,在没有其他过滤条件的情况下MySQL会自动选择小表作为驱动表,但是left join在驱动表的选择上遵循的是左边驱动右边的原则,即left join左边的表名为驱动表。

合理利用索引

被驱动表的索引字段作为on的限制字段。

利用小表去驱动大表

从原理图能够直观的看出如果能够减少驱动表的话,减少嵌套循环中的循环次数,以减少 IO总量及CPU运算的次数。

巧用STRAIGHT_JOIN

inner join是由mysql选择驱动表,但是有些特殊情况需要选择另个表作为驱动表,比如有group by、order by等「Using filesort」、「Using temporary」时。STRAIGHT_JOIN来强制连接顺序,在STRAIGHT_JOIN左边的表名就是驱动表,右边则是被驱动表。在使用STRAIGHT_JOIN有个前提条件是该查询是内连接,也就是inner join。其他链接不推荐使用STRAIGHT_JOIN,否则可能造成查询结果不准确。

这个方式有时可能减少3倍的时间。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
15天前
|
存储 缓存 监控
数据库优化技术:提升性能与效率的关键策略
【10月更文挑战第15天】数据库优化技术:提升性能与效率的关键策略
46 8
|
5天前
|
SQL Oracle 关系型数据库
Oracle数据库优化方法
【10月更文挑战第25天】Oracle数据库优化方法
17 7
|
1天前
|
SQL 缓存 监控
数据库优化
【10月更文挑战第29天】数据库优化
4 1
|
5天前
|
存储 Oracle 关系型数据库
Oracle数据库优化策略
【10月更文挑战第25天】Oracle数据库优化策略
11 5
|
1天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
7 1
|
3天前
|
XML Java 数据库连接
如何使用HikariCP连接池来优化数据库连接管理
在Java应用中,高效管理数据库连接是提升性能的关键。本文介绍了如何使用HikariCP连接池来优化数据库连接管理。通过引入依赖、配置参数和获取连接,你可以显著提高系统的响应速度和吞吐量。 示例代码展示了从配置到使用的完整流程,帮助你轻松上手。
17 3
|
6天前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
16 4
|
9天前
|
存储 缓存 监控
数据库优化:提升性能与效率的关键策略
【10月更文挑战第21】数据库优化:提升性能与效率的关键策略
|
9天前
|
存储 分布式计算 监控
数据库优化:提升性能与效率的全面策略
【10月更文挑战第21】数据库优化:提升性能与效率的全面策略
|
23天前
|
SQL 监控 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响