数据分析师的自我修养,如何进阶为数据科学家

简介: 本文讲述如何从数据分析师进阶为数据科学家。

有人问我,应该如何从数据分析师进阶为数据科学家呢?很简单,分三步:

  1. 打开LinkedIn,登录。
  2. 点击“编辑我的个人资料”。
  3. 找到“数据分析师”,并用“数据科学家”替代。

完成!非常容易吧。

不幸的是,现实并不那么简单。

掌握必备的技能,从或多或少的数据中得出分析见解,这些都并非易事。

关于如何进入数据科学领域的文章有很多,但是关于从数据分析师转变为数据科学家的文章却很少。

在此之前,我们有必要分别给出这两个职业的定义。

image

数据分析师

对结构化数据进行收集、处理并应用统计算法,从而产生效益和改进决策。

数据科学家

数据科学家有类似的目标,但需要更强的能力,从而能处理大量的非结构化数据,很多情况下需要实时处理。

数据科学家需要发现重要信息,能够对不同来源的数据进行数据清理、处理并运行高级算法。同时,需要很强的沟通描述能力,以及可视化技能。

我经常会遇到许多优秀的数据分析师,他们非常想进阶为数据科学家,但苦于没有机会,或不知道该如何开始。这也是促使我写本文的原因之一。

为什么要成为数据科学家?

原因有很多,主要分为以下几点:

影响力

可能带来巨大的商业利益。更有机会得到领导层青睐,能够更好地提升发展方向。

技能

在快速发展的数据科学领域中,有许多问题需要被解决。例如,构建图像识别器或文本分类器识别社交媒体上的发布的违规言论。

竞争力

有人预测人工智能最终将取代人类的工作。为了保证自己工作,应该不断创新并提高竞争力,而不是等待被自动化取代。

发展机会

会有更多的发展机会,薪水提升空间也更大。目前优秀的数据科学家很少,市场需求量很大。

如何成为数据科学家?

大多数数据分析师都有很好的基础,但是应用先进的方法处理大型数据集需要多年的学习和经验积累。

那么,数据科学家需要哪些技能?

这个问题并没有正确的答案,复杂的数据科学项目涉及到许多专业技能。在投入数据科学领域的最初几年,最好掌握以下技能:

数据科学语言:Python / R

关系数据库:MySQL、Postgress

非关系数据库:MongoDB

机器学习模型:回归、提升树支持向量机(Boosted Trees SVM), 神经网络

绘图:Neo4J、GraphX

分布式计算:Hadoop、Spark

云:GCP / AWS / Azure

API 交互: OAuth、Rest

数据可视化和网页应用:D3、RShiny

专业领域:自然语言处理、OCR和计算机视觉

image

提升树模型在数据科学竞赛中很受欢迎

image

RShiny仪表板是不错的探索数据交互方式

掌握这些技能需要大量的时间(可能比获得专业学位更久)。但每个人都不能满足现状,必须不断学习。如果我们每天能进步一点,那么在未来某天就能达到自己的预期目标。

决心和坚韧有时比聪明才智能有用。

行动计划

首先我们需要一些基本技能:

1.从正确的理念开始

十年前,等待数据课程的资料可能需要数周的时间,但那些日子已经一去不回。如今到处都有很棒的学习资源,我们需要不断学习,不断提升技能。

2.学习一门语言并培养数学技能

可以选择学习Python或R语言。Coursera和Udemy等网站上有大量免费课程。吴恩达的机器学习课程和斯坦福大学的神经网络课程都非常棒,而且很有趣。

许多Python用户喜欢使用Anaconda和Jupyter Notebook。许多R用户喜欢用R Studio。

3.解决实际问题

尝试解决工作中的实际问题,与商业专家和数据工程师一起工作。

4.参加Kaggle比赛

Kaggle任务有一定范围,而且数据比较干净,但能很好的提高建立模型技能,同时能与几千人一起解决挑战性的数据问题。不要担心排名,从零开始。

5.了解行业大神的动向

可以关注Geoffrey Hinton、吴恩达、Yann LeCun、Rachel Thomas、Jeremy Howard等人。

6.使用高效的工作方式

积累一定基础后,使用GitHub等版本控制系统改进自己的工作流程,以便进行部署和代码维护,还可以使用Docker。

7.有效地沟通

我们需要展现自己的工作成果,在跟领导层汇报工作时,需要有效地利用演示文稿等中。

良好的工作环境

即使你掌握了许多技能,但如果所在的公司没有合适的工具和环境,那么开展工作也是很困难的。工作环境中总会存在些不可控的因素,因此我们要考虑哪些因素可以改善和利用。

1.转到合适的团队

大多数大中型企业至少有一个小型数据科学团队,因此要选择合适的企业。

2.与合适的人合作

如果换工作不太现实,那么设法与出色的数据科学家合作。例如,发现相关问题,与专业人员合作解决,而不是委托他们解决。

3.适当的工具和环境

企业有时不太明确该如何数据科学工具进行投入。有些企业制定计划和投入过程比较繁琐,因此只会优先考虑收益明显的商业案例。抓住机会,倡导对分析环境、工具、相关培训的投入。

4.制定明确的用例

了解公司的业务以及能如何应用数据科学,将这两者联系起来,制定明确的用例。

5.与更优秀的人合作

努力成为优秀团队中的一员,你不仅会收获地更多,还能学到很多自己为掌握的知识。

结语

如果你也想进阶为数据科学家,那么现在就是开始的最佳机会,立即开始学习,尽快解决实际问题。在学习的过程中,你会不断提升自己,最终让自己大吃一惊,要珍惜每个机会。

原文发布时间为:2018-07-26
本文作者:Ben Stanbury
本文来自云栖社区合作伙伴“ CDA数据分析师”,了解相关信息可以关注“ CDA数据分析师

相关文章
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
探索数据科学:从理论到实践的技术感悟
【5月更文挑战第31天】本文通过作者在数据科学领域的学习与实践经历,探讨了理论与实际应用之间的桥梁。文章首先回顾了数据科学的基础知识和核心概念,然后通过案例分析展示了如何将抽象的理论知识转化为解决实际问题的工具。最后,作者分享了个人对数据科学未来发展的看法和建议,旨在为同行提供参考和启发。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
技术感悟之数据分析的奇妙旅程
这篇文章旨在分享我在数据分析领域的探索和心得。通过深入浅出的方式,带领读者了解数据分析的核心概念、工具和应用。希望这些分享能帮助大家更好地理解和应用数据分析,为生活和工作带来更多便利和价值。
|
5月前
|
机器学习/深度学习 存储 供应链
探索数据科学:从理论到实践的旅程
本文深入探讨了数据科学的多个方面,包括其理论基础、实际应用案例以及对现代社会的影响。文章首先定义了数据科学,并概述了其核心组成部分。随后,通过分析具体的行业案例,展示了数据科学如何在实际中发挥作用,改善决策过程并优化业务流程。最后,文章讨论了数据科学面临的挑战和未来发展趋势,为读者提供了一个全面的数据科学视角。
63 0
|
7月前
|
机器学习/深度学习 算法 搜索推荐
数据分析师的职业规划与参考资料
数据分析师的职业规划与参考资料
|
机器学习/深度学习
经历多个数据科学岗位后,对于数据科学面试他分享了以下求职心得
作者拥有多份数据科学求职的经验,现在分享给各位小伙伴。
5824 0
|
SQL 分布式计算 大数据
这些数据科学家必备的技能,你拥有哪些?
想要成为数据科学家,没有这些技能怎么能行?
1920 0
|
机器学习/深度学习
初入数据科学领域,你需要有七个这样的思维
当数据科学家加入一家公司的时候,做事的思想往往是最重要的!
1781 0
|
人工智能
从事数据科学前必须知道的五件事儿
本文讲解了从事数据科学前应该了解的五件事情,主要是关于学习数据科学时候应该注意的一些事项。
2101 0