云数据,大计算—海量日志数据分析与应用

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 网站日志分析是大数据应用场景中非常常见的一种,今天我们通过实例对网站日志数据进行分析,从日志采集——>日志数据清洗、加工做画像分析——>BI报表展现,更进一步,通过社交数据分析做好友推荐 ,对整个全链路过程做实验操作演练,希望能给大家提供一些帮助。

课程介绍 

         网站日志分析是大数据应用场景中非常常见的一种,今天我们通过实例对网站日志数据进行分析,从日志采集——>日志数据清洗、加工做画像分析——>BI报表展现,更进一步,通过社交数据分析做好友推荐 ,对整个全链路过程做实验操作演练,希望能给大家提供一些帮助。


准备工作

        杭州TI专场,workshop现场是在云中沙箱账号环境进行的实验操作,若您想在自己的项目中进行演练,请准备好如下事项:
        1、 购买MaxCompute
        3、 进入数据开发界面

课程内容

        3、 数据加工:用户画像

        4、数据分析展现:可视化报表及嵌入应用

        5、社交数据分析:好友推荐


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
打赏
0
0
0
0
78990
分享
相关文章
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
SelectDB 实现日志高效存储与实时分析,完成任务可领取积分、餐具套装/水杯/帆布包!
SLS 重磅升级:超大规模数据实现完全精确分析
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
291 117
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
29 3
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
docker运维查看指定应用log文件位置和名称
通过本文的方法,您可以更高效地管理和查看Docker容器中的日志文件,确保应用运行状态可控和可监测。
251 28
【YashanDB知识库】应用绑定参数的慢查询,慢日志抓取不到
【YashanDB知识库】应用绑定参数的慢查询,慢日志抓取不到
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
海量日志接入 Elasticsearch Serverless 应用降本70%以上
本文将探讨在日志场景下,使用阿里云Elasticsearch Serverless相较于基于ECS自建Elasticsearch集群的成本与性能优势,展示如何通过Serverless架构实现高达 70%以上的成本节约。
241 0
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
140 2