OLAP on TableStore:基于Data Lake Analytics的Serverless SQL大数据分析

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介: TableStore(简称OTS)是阿里云的一款分布式表格系统,为用户提供schema-free的分布式表格服务。随着越来越多用户对OLAP有强烈的需求,我们提供在表格存储上接入Data Lake Analytics(简称DLA)服务的方式,提供一种快速的OLAP解决方案。

背景介绍

TableStore(简称OTS)是阿里云的一款分布式表格系统,为用户提供schema-free的分布式表格服务。随着越来越多用户对OLAP有强烈的需求,我们提供在表格存储上接入Data Lake Analytics(简称DLA)服务的方式,提供一种快速的OLAP解决方案。DLA是阿里云上的一款的通用SQL查询引擎,通过在OTS连通DLA服务,使用通用的SQL语言(兼容mysql5.7绝大部分查询语法),在表格存储上做灵活的数据分析任务。

架构视图

arch.png

如上图所示,整体OLAP查询架构涉及3款阿里云产品:DLA,OTS,OSS。其中DLA负责分布式SQL查询计算,在实际运行过程中,会将用户sql查询请求进行任务拆解,产生若干可并行化的子任务,提升数据计算和查询能力。OTS为数据存储层,用于接收DLA的各类子查询任务。如果用户已经有存量的数据在OTS上,可以直接在DLA上建立映射视图,实现快速体验SQL计算带来的便捷。OSS为分布式对象存储系统,主要用于用户查询结果数据的保存。

因此用户要想快速体验SQL on OTS,必须在开通OTS的前提下,完成DLA和OSS服务的开通。通过上述3个云产品的配合,用户就能在OTS上快速执行SQL计算。目前开通OSS服务的主要原因是DLA默认回查询结果集数据写回到OSS存储,因此需要引入一个额外的存储依赖,但仅依赖用户开通OSS服务,不需要用户预先创建OSS存储实例。

目前开服公测的区域是上海区,对应的实例是该region内所有的容量型实例。在开通DLA服务时,需要先填写公测申请,通过之后按照“接入方式”小节的步骤,能快速完成接入体验。

接入方式

整个主要包含OTS、OSS、DLA的服务接入。需要注意的一点是,完成接入之后,就会按照实际查询产生相应的费用。如在这个过程中,用户账号是欠费的,将会发生查询失败。

OTS服务开通

如果用户已经开通的OTS服务,并且上面已经包含存量的实例,表格数据,则忽略该步骤。

对于首次使用OTS的用户,可按照下述方式开通OTS:

  1. 登录https://www.aliyun.com
  2. 进入“产品”->"云计算基础"->"数据库"->“表格存储 TableStore”;
  3. 按照上面的文档说明,快速建立实例和表格,进行体验;

    
    1)使用控制台,快速创建测试表格:

    ots_create_table.jpg

    
    2)使用控制台,快速插入测试数据:

    insert_data.jpg

OSS服务开通

  1. 登录https://www.aliyun.com
  2. 进入“产品”->"云计算基础"->"存储服务"->“对象存储 OSS”;
  3. 直接点击服务开通即可。

OSS服务开通后,不需要创景对象实例,DLA接入时,会自动为用户在OSS服务中,创建用于存储查询结果数据的对象存储实例,用户不需要关心。

DLA服务开通

  1. 登录https://www.aliyun.com
  2. 进入“产品”->"大数据"->"大数据计算"->“Data Lake Analytics”;
  3. 直接点击服务开通;

注意:处于公测阶段时,开通服务需要做公测申请,填写好相关信息即可。

DLA on OTS接入

按照下列步骤,在DLA上建立OTS的映射:

  1. 开通DLA服务之后,可以选择不同region,选择开通对应region的DLA服务实例(如现在华东2的上海区域)。不同的region,对应不同的账号,不同region的DLA账号,不能混用,如下图所示:

service_open.jpg

service_open2.jpg

注意:账号创建完成之后,会收到相关邮件(邮箱为阿里云的注册邮箱),内含该region的DLA账号和密码,注意查收。
  1. 选择region,授权DLA访问OTS上的用户实例数据,如下图所示:
    assumeRole.jpg
  2. 服务开通之后,有3中SQL访问方式:控制台、mysql client,JDBC。

控制台访问

点击数据库连接,使用邮件中的该region的用户名和密码,连接进入控制台。

console_access.jpg

进入控制台后,需要为OTS上的实例表格数据建立映射信息。场景举例:假设用户在上海region已经有一个名为sh_tpch的实例,该实例包含表格test001,里面包含2行测试数据。对该实例建立映射的步骤包括:

1)将ots的实例映射成DLA的一个DataBase实例:
在建立DLA的Database映射前,首先需要在OTS上创建一个表格存储的实例instance,如:

创建一个实例,名为sh-tpch,对应的endpoint为https://sh-tpch.cn-shanghai.ots.aliyuncs.com。

完成测试实例创建后,执行下列语句建立Database映射:

CREATE SCHEMA sh_tpch001 with DBPROPERTIES(LOCATION ='https://sh-tpch.cn-shanghai.ots.aliyuncs.com', catalog='ots', instance ='sh-tpch');

注意:使用mysql client时,可以使用create database或create schema语句进行创建db映射;但是在控制台,目前只支持create schema语句创建db映射。

create_db.jpg

上述语句,将在DLA上创建一个名为sh_tpch001的database,对应的实例是ots的sh-tpch.cn-shanghai.ots.aliyuncs.com集群下名为sh-tpch的实例。通过上面的语句,就能产生一个ots的实例映射。

2)在tp_tpch001的DB下,建立表格的映射:
在建立DLA的表格映射前,首先需要在OTS创建测试表,流程参考"OTS服务开通"小节。

测试表格创建完成后,执行下列语句建立表格映射:

CREATE TABLE test001 (pk0 int , primary key(pk0));

注意:主要建立DLA映射表时,指定的Primary Key必须跟OTS表格定义Primary Key列表一致。因为Primary Key必须能是唯一的定位一行,一旦映射表的Primary Key列表与OTS表格的PK不一致,则可能会导致SQL查询结果出现非预期的错误。

create_table.jpg

例如:用户的OTS实例sh_tpch上包含test001表格,其中只有一列pk0。上面的命令就完成了在DLA的实例sh_tpch001上,创建映射表test001。使用show命令能查看该表创建成功:

show_table.jpg

3)使用select语句执行sql查询:

1. 查出所有数据:
select * from test001;

select_0.jpg

2. 执行count统计:
select count(*) from test001;

select_1.jpg

3. 执行sum统计:
select sum(pk0) from test001;

select_2.jpg

4)更为丰富执行语句,请查看如下的帮助说明文档:

create schema语句:https://help.aliyun.com/document_detail/72005.html
create table语句:https://help.aliyun.com/document_detail/72006.html
select语句:https://help.aliyun.com/document_detail/71044.html
show语句:https://help.aliyun.com/document_detail/72011.html
drop table语句:https://help.aliyun.com/document_detail/72008.html
drop schema语句:https://help.aliyun.com/document_detail/72007.html

5)在做SQL执行时,可以选择同步执行结果,返回满足条件的前10000条记录;如果要获大结果集数据,需要选择异步执行,并使用show query_id的方式异步获取结果:

show query_task where id = '59a05af7_1531893489231';

async_exec.jpg
show_async_result.jpg

mysql访问

使用标准的mysql client也能快速连通DLA的数据实例。其中连接语句为:

mysql -h service.cn-shanghai.datalakeanalytics.aliyuncs.com -P 10000 -u <username> -p <password> -c -A

其他操作语句跟“控制台访问”小节介绍一致。

JDBC访问

也可以使用标准的java api实现访问,连接串为:

jdbc:mysql://service.cn-shanghai.datalakeanalytics.aliyuncs.com:10000/

其他操作语句跟“控制台访问”小节介绍一致。

总结

通过DLA+OTS,我们能让用户快速在表格存储上体验极致的分布式SQL计算。

Reference

表格存储(Table Store): https://www.aliyun.com/product/ots
Data Lake Analytics: https://www.aliyun.com/product/datalakeanalytics

联系我们

如接入过程或sql查询出现任何问题,可以钉钉联系:蔡杰明(钟牙)
OTS外部用户钉钉交流群:表格存储公开交流群, 群号:11789671

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
1月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
283 4
|
2月前
|
JSON 大数据 API
巧用苏宁易购 API,精准分析苏宁易购家电销售大数据
在数据驱动的电商时代,精准分析销售数据能助力企业优化库存、提升营销效果。本文详解如何利用苏宁易购API获取家电销售数据,结合Python进行数据清洗与统计分析,实现销量预测与洞察提取,帮助企业降本增效。
66 0
|
25天前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
137 49
|
1月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
1月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。
|
20天前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
91 14
|
2月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
90 0
|
3月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
101 4

相关产品

  • 函数计算