你不知道的前端算法之热力图的实现

简介: inMap 是一款基于 canvas 的大数据可视化库,专注于大数据方向点线面的可视化效果展示。目前支持散点、围栏、热力、网格、聚合等方式;致力于让大数据可视化变得简单易用。

inMap 是一款基于 canvas 的大数据可视化库,专注于大数据方向点线面的可视化效果展示。目前支持散点、围栏、热力、网格、聚合等方式;致力于让大数据可视化变得简单易用。

GitHub 地址:https://github.com/TalkingData/inmap (点个 Star 支持下作者吧!)

热力图这个名字听起来很高大上,其实等同于我们常说的密度图。

image

如图表示,红色区域表示分析要素的密度大,而蓝色区域表示分析要素的密度小。只要点密集,就会形成聚类区域。 看到这么炫的效果,是不是自己也很想实现一把?接下来手把手实现一个热力(带你装逼带你飞、 哈哈),郑重声明:下面代码片段均来自 inMap

准备数据

inMap 接收的是经纬度数据,需要把它映射到 canvas 的像素坐标,这就用到了墨卡托转换,墨卡托算法很复杂,以后我们会有单独的一篇文章来讲讲他的原理。经过转换,你得到的数据应该是这样的:


[
  {
    "lng": "116.395645",
    "lat": 39.929986,
    "count": 6,
    "pixel": { //像素坐标
      "x": 689,
      "y": 294
    }
  },
  {
    "lng": "121.487899",
    "lat": 31.249162,
    "count": 10,
    "pixel": { //像素坐标
      "x": 759,
      "y": 439
    }
  },
  ...
]

好了,我们得到转换后的像素坐标数据(x、y),就可以做下面的事情了。

创建 canvas 渐变填充

创建一个由黑到白的渐变圆


let gradient = ctx.createRadialGradient(x, y, 0, x, y, radius);
gradient.addColorStop(0, 'rgba(0,0,0,1)');
gradient.addColorStop(1, 'rgba(0,0,0,0)');
ctx.fillStyle = gradient;
ctx.arc(x, y, radius, 0, Math.PI * 2, true);

  • createRadialGradient() 创建线性的渐变对象
  • addColorStop() 定义一个渐变的颜色带

效果如图: image 那么问题就来了,如果每个数据权重值 count 不一样,我们该如何表示呢?

设置 globalAlpha

根据不同的count值设置不同的Alpha,假设最大的count的Alpha等于1,最小的count的Alpha为0,那么我根据count求出Alpha。

let alpha = (count - minValue) / (maxValue - minValue);
然后我们代码如下:

drawPoint(x, y, radius, alpha) {
    let ctx = this.ctx;
    ctx.globalAlpha = alpha; //设置 Alpha 透明度
    ctx.beginPath();
    let gradient = ctx.createRadialGradient(x, y, 0, x, y, radius);
    gradient.addColorStop(0, 'rgba(0,0,0,1)');
    gradient.addColorStop(1, 'rgba(0,0,0,0)');
    ctx.fillStyle = gradient;
    ctx.arc(x, y, radius, 0, Math.PI * 2, true);
    ctx.closePath();
    ctx.fill();
}

效果跟上一个截图有很大区别,可以对比一下透明度的变化。 image (这么黑乎乎的一团,跟热力差距好大啊)

image

重置 canvas 画布颜色

  • getImageData() 复制画布上指定矩形的像素数据
  • putImageData() 将图像数据放回画布:

getImageData()返回的数据格式如下:


{
  "data": {
    "0": 0,   //R
    "1": 128, //G
    "2": 0,   //B
    "3": 255, //Aplah
    "4": 0, //R
    "5": 128, //G
    "6": 0,  //B
    "7": 255, //Aplah
    "8": 0,
    "9": 128,
    "10": 0,
    "11": 255,
    "12": 0,
    "13": 128,
    "14": 0,
    "15": 255,
    "16": 0,
    "17": 128,
    "18": 0,
    "19": 255,
    "20": 0,
    "21": 128,
    "22": 0
    ...

返回的数据是一维数组,每四个元素表示一个像素(rgba)值。

实现热力原理:读取每个像素的alpha值(透明度),做一个颜色映射。

代码如下:


let palette = this.getColorPaint(); //取色面板
let img = ctx.getImageData(0, 0, container.width, container.height);
    let imgData = img.data;
    let max_opacity = normal.maxOpacity * 255;
    let min_opacity = normal.minOpacity * 255;
    //权重区间
    let max_scope = (normal.maxScope > 1 ? 1 : normal.maxScope) * 255;
    let min_scope = (normal.minScope < 0 ? 0 : normal.minScope) * 255;
    let len = imgData.length;
    for (let i = 3; i < len; i += 4) {
        let alpha = imgData[i]; 
        let offset = alpha * 4;
        if (!offset) {
            continue;
        }
        //映射颜色
        imgData[i - 3] = palette[offset];
        imgData[i - 2] = palette[offset + 1];
        imgData[i - 1] = palette[offset + 2];

        // 范围区间
        if (imgData[i] > max_scope) {
            imgData[i] = 0;
        }
        if (imgData[i] < min_scope) {
            imgData[i] = 0;
        }

        // 透明度
        if (imgData[i] > max_opacity) {
            imgData[i] = max_opacity;
        }
        if (imgData[i] < min_opacity) {
            imgData[i] = min_opacity;
        }
    }
    //将设置后的像素数据放回画布
ctx.putImageData(img, 0, 0, 0, 0, container.width, container.height);

创建颜色映射,一个好的颜色映射决定最终效果。 inMap 创建一个长256px的调色面板:


let paletteCanvas = document.createElement('canvas');
let paletteCtx = paletteCanvas.getContext('2d');
paletteCanvas.width = 256;
paletteCanvas.height = 1;
let gradient = paletteCtx.createLinearGradient(0, 0, 256, 1);

inMap 默认颜色如下:


this.gradient = {
    0.25: 'rgb(0,0,255)',
    0.55: 'rgb(0,255,0)',
    0.85: 'yellow',
    1.0: 'rgb(255,0,0)'
};

将gradient颜色设置到调色面板对象中


for (let key in gradient) {
    gradient.addColorStop(key, gradientConfig[key]);
}

返回调色面板的像素点数据:


return paletteCtx.getImageData(0, 0, 256, 1).data;

创建出来的调色面板效果图如下:(看起来像一个渐变颜色条)

image

最终我们实现的热力图如下:

image

下节预告

下一节,我们将重点介绍 inMap 文字避让算法的实现。

原文发布时间为:2017年12月26日
原文作者: aresn 

本文来源:开源中国 如需转载请联系原作者


目录
相关文章
|
3月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
158 1
|
1月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
24 0
|
6月前
|
移动开发 算法 前端开发
前端算法之堆排序
前端算法之堆排序
42 1
|
2月前
|
算法 前端开发 机器人
一文了解分而治之和动态规则算法在前端中的应用
该文章详细介绍了分而治之策略和动态规划算法在前端开发中的应用,并通过具体的例子和LeetCode题目解析来说明这两种算法的特点及使用场景。
一文了解分而治之和动态规则算法在前端中的应用
|
6月前
|
前端开发 算法
sass 公用10个mixins代码块,算法太TM重要了,前端开发要求
sass 公用10个mixins代码块,算法太TM重要了,前端开发要求
|
3月前
|
搜索推荐 前端开发 算法
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
269 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
|
2月前
|
算法 前端开发
一文了解贪心算法和回溯算法在前端中的应用
该文章深入讲解了贪心算法与回溯算法的原理及其在前端开发中的具体应用,并通过分析LeetCode题目来展示这两种算法的解题思路与实现方法。
|
3月前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
74 1
|
3月前
|
数据采集 前端开发 算法
基于朴素贝叶斯算法的新闻类型预测,django框架开发,前端bootstrap,有爬虫有数据库
本文介绍了一个基于Django框架和朴素贝叶斯算法开发的新闻类型预测系统,该系统具备用户登录注册、后台管理、数据展示、新闻分类分布分析、新闻数量排名和新闻标题预测等功能,旨在提高新闻处理效率和个性化推荐服务。
|
5月前
|
前端开发 算法 JavaScript
优化算法在前端性能提升中的应用
随着互联网应用的日益复杂,前端性能优化成为开发者关注的焦点。本文探讨了优化算法在前端性能提升中的重要作用,包括对JavaScript代码的优化、资源加载的算法选择以及页面渲染的优化策略。通过合理应用优化算法,可以有效提升前端应用的性能和用户体验。
下一篇
无影云桌面