一文了解贪心算法和回溯算法在前端中的应用

简介: 该文章深入讲解了贪心算法与回溯算法的原理及其在前端开发中的具体应用,并通过分析LeetCode题目来展示这两种算法的解题思路与实现方法。

贪心算法和回溯算法

在我们日常的生活中,经常会碰到贪心算法和回溯算法的应用场景。比如,贪心算法常应用于最少硬币找零问题,分数背包等问题。而回溯算法常用于迷宫求解、N皇后等问题。这两种各有各的优点,也各有各的不足。

在下面的这篇文章中,将讲解贪心算法和回溯算法的常见应用场景,以及分析高频 leetcode 算法题。

一起来学习⑧📖

一、贪心算法

1、贪心算法是什么?

  • 贪心算法是算法设计中的一种方法。
  • 期盼通过每个阶段的局部最优选择,从而达到全局的最优。
  • 结果不一定最优

2、应用场景

  • 最少硬币找零问题
  • 分数背包问题
  • ……

3、场景剖析:零钱兑换

先用一张图来描述输入输出结果。

贪心算法场景:零钱兑换

从上图中可以看到,如果用贪心算法解决零钱兑换问题的话,它会先从最大面额的硬币开始,拿尽可能多的这种硬币找零。当无法再拿更多这种价值的硬币时,开始拿第二大价值的硬币,依次继续。

大家可以发现,如果是第一种情况,确实可以达到理论最优。但是如果是第二种情况的话,还有一种更优的解法,那就是6 = 3 + 3。所以说,贪心算法并不总是能得到最优答案。

但是呢,虽说不能总是能得到最优答案,那我们为什么还有用它呢?

比起动态规则算法而言,贪心算法更简单更快。虽然它并不总是能得到最优的答案,但是综合来看,它相对执行时间来说,输出了一个可以接受的解。

二、回溯算法

1、回溯算法是什么?

  • 回溯算法是算法设计中的一种方法。
  • 回溯算法是一种渐进式寻找并构建问题解决方式的策略。
  • 回溯算法会先从一个可能的动作开始解决问题,如果不行,就回溯选择另一个动作,直到将问题解决。

2、什么问题适合选用回溯算法解决?

  • 很多路
  • 这些路里面,有死路,有活路
  • 通常需要递归来模拟所有的路。

2、应用场景

  • 迷宫老鼠问题
  • 数独解题器
  • 骑士巡逻问题
  • N皇后问题
  • ……

3、场景剖析:全排列

先用一张图来战术输入输出的过程。

回溯算法场景:全排列

从上图中可以看到,全排列 [1, 2, 3] 三个元素,在递归的过程中会有很多种结果,比如说[1, 1, 2],[1, 2, 1], [1, 2, 2]之类的结果。那么,当出现重复元素的时候,就会出现死路,这个时候就应该回退回去并去寻找下一条路活路走出去。这就是回溯算法要解决的问题。

三、贪心算法常见应用

引用leetcode的几道经典题目来强化贪心算法

1、leetcode 455:分发饼干

(1)题意

这里附上原题链接

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

输入输出示例:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1
  • 解释:
    • 你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
    • 虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
    • 所以你应该输出1。

(2)解题思路

  • 既能满足孩子,还消耗最少。
  • 先将“较小的饼干”分给“胃口较小”的孩子。

(3)解题步骤

  • 对饼干数组和胃口数组升序降序。
  • 遍历饼干数组,找到能满足第一个孩子的饼干。
  • 然后继续遍历饼干数组,找到能满足第二、三、四、……、n个孩子的饼干。

(4)代码实现

/**
 * @param {number[]} g 孩子胃口
 * @param {number[]} s 饼干尺寸
 * @return {number}
 */
let findContentChildren = function(g, s) {
   

    // 实现升序排序
    const sortFunc = function(a, b){
   
        return a-b;
    }

    //对g进行升序排序,即从小到大排序
    g.sort(sortFunc);

    //对s进行升序排序,即从小到大排序
    s.sort(sortFunc);

    //定义初始值,记录饼干能满足多少个孩子
    let i = 0;

    //对排序后的饼干进行一一遍历,并逐一与孩子的胃口比对,如果能满足,则对i进行+1操作
    s.forEach(n => {
   
        if(n >= g[i]){
   
            i += 1;
        }
    });
    return i;
};

console.log(findContentChildren([1, 2], [1, 2, 3]));

2、leetcode 122:买卖股票的最佳时机

(1)题意

这里附上原题链接

给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

输入输出示例:

  • 输入: prices = [7,1,5,3,6,4]
  • 输出: 7
  • 解释:
    • 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
    • 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。

(2)解题思路

  • 前提:上帝视角,知道未来的价格。
  • 局部最优:建好就收,见差就不动,不做长远打算。

(3)解题步骤

  • 新建一个变量,用来统计总利润。
  • 遍历价格数组,如果当前价格比昨天高,就是昨天买,今天卖,否则就不交易。
  • 遍历结束后,返回所有利润之和。

(4)代码实现

/**
 * @param {number[]} prices
 * @return {number}
 */
let maxProfit = function(prices) {
   
    //新建一个变量,用来统计总利润
    let profit = 0;
    //遍历价格数组
    for(let i  = 1; i < prices.length; i++){
   
        //如果当前价格prices[i]比昨天prices[i - 1]高,就是昨天买,今天卖;
        //否则说明当前天数没买,不进行交易
        if(prices[i] > prices[i - 1]){
   
            //遍历过程中,不断对利润进行相加
            profit += prices[i] - prices[i-1];
        }
    }
    //遍历结束后,返回所有利润之和
    return profit;
};

console.log(maxProfit([7, 5, 4, 7]));

四、回溯算法常见应用

引用leetcode的几道经典题目来强化回溯算法

1、leetcode 46:全排列

(1)题意

这里附上原题链接

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

输入输出示例:

  • 输入: nums = [1,2,3]
  • 输出: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

(2)解题思路

  • 要求:所有排列情况;没有重复元素。
  • 有出路、有死路。
  • 考虑回溯算法。

(3)解题步骤

  • 用递归模拟出所有情况。
  • 遇到包含重复元素的情况,就回溯。
  • 收集所有到达递归终点的情况,并返回。

(4)代码实现

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
let permute = function(nums) {
   
    // 1.定义一个变量,收集所有结果的情况
    const res = [];
    const backtrack = (path) => {
   
        // 4.递归的重点收集所有满足题目要求的数组
        if(path.length === nums.length){
   
            res.push(path);
            return;
        }
        nums.forEach(n => {
   
            // 3.在把元素放进去时该数组已有此元素,那么此路为死路
            if(path.includes(n)){
   
                return;
            }
            backtrack(path.concat(n));
        });
    };
    // 2.递归时传入一个数组
    backtrack([]);
    return res;
};

console.log(permute([1, 2, 3]));

2、leetcode 78:子集

(1)题意

这里附上原题链接

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。

解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

输入输出示例:

  • 输入: nums = [1,2,3]
  • 输出: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

(2)解题思路

  • 要求:所有子集;没有重复元素。
  • 有出路、有死路。
  • 考虑使用回溯算法。

(3)解题步骤

  • 用递归模拟出所有情况。
  • 保证接的数字都是后面的数字。
  • 收集所有到达递归终点的情况,并返回。

(4)代码实现

/**
 * @param {number[]} nums
 * @return {number[][]}
 */
 var subsets = function(nums) {
   
     //1.定义一个变量,存放结果
    const res = [];
    const backtrack = (path, l, start) => {
   
        // 4.到达路径终点时,push到结果里面
        if(path.length === l){
   
            res.push(path);
            return;
        }
        //3.不断遍历数组,并将其添加到path中
        for(let i = start; i < nums.length; i++){
   
            backtrack(path.concat(nums[i]), l, i + 1);
        }
    }
    //2.子集的长度有可能是0-nums.length不等
    for(let i = 0; i <= nums.length; i++){
   
        // 三个参数分别指:路径,路径数组的长度,起始的下标
        backtrack([], i, 0);
    }
    return res;
};

console.log(subsets([1, 2, 3]));

五、写在最后

贪心算法和回溯算法在前端的面试和笔试中也是非常经典的常考题。贪心算法相较于其他算法来说比较简单,而回溯算法涉及到很多溯回问题,逻辑较强,建议大家在做题目时如果看不懂的情况下可以选择多调试代码,一步一步跟着它的思路,多调试几遍,慢慢就能深入理解其逻辑了。

贪心算法和回溯算法在前端中的应用就讲到这里啦!如有不理解或文章有误欢迎评论区留言或私信我交流~

  • 关注公众号 星期一研究室 ,第一时间关注技术干货,更多有趣的专栏待你解锁~
  • 如果这篇文章对你有用,记得点个赞加个关注再走哦~
  • 我们下期见!🥂🥂🥂
相关文章
|
17天前
|
前端开发 JavaScript 安全
前端性能调优:HTTP/2与HTTPS在Web加速中的应用
【10月更文挑战第27天】本文介绍了HTTP/2和HTTPS在前端性能调优中的应用。通过多路复用、服务器推送和头部压缩等特性,HTTP/2显著提升了Web性能。同时,HTTPS确保了数据传输的安全性。文章提供了示例代码,展示了如何使用Node.js创建一个HTTP/2服务器。
31 3
|
19天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
11天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
28 2
|
14天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
18天前
|
Rust 前端开发 JavaScript
前端性能革命:WebAssembly在高性能计算中的应用探索
【10月更文挑战第26天】随着Web应用功能的日益复杂,传统JavaScript解释执行模式逐渐成为性能瓶颈。WebAssembly(Wasm)应运而生,作为一种二进制代码格式,支持C/C++、Rust等语言编写的代码在浏览器中高效运行。Wasm不仅提升了应用的执行速度,还具备跨平台兼容性和安全性,显著改善了Web应用的响应速度和用户体验。
31 4
|
17天前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
35 2
|
18天前
|
前端开发 安全 应用服务中间件
前端性能调优:HTTP/2与HTTPS在Web加速中的应用
【10月更文挑战第26天】随着互联网的快速发展,前端性能调优成为开发者的重要任务。本文探讨了HTTP/2与HTTPS在前端性能优化中的应用,介绍了二进制分帧、多路复用和服务器推送等特性,并通过Nginx配置示例展示了如何启用HTTP/2和HTTPS,以提升Web应用的性能和安全性。
17 3
|
18天前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
28 2
|
18天前
|
前端开发 JavaScript API
前端框架新探索:Svelte在构建高性能Web应用中的优势
【10月更文挑战第26天】近年来,前端技术飞速发展,Svelte凭借独特的编译时优化和简洁的API设计,成为构建高性能Web应用的优选。本文介绍Svelte的特点和优势,包括编译而非虚拟DOM、组件化开发、状态管理及响应式更新机制,并通过示例代码展示其使用方法。
33 2
|
19天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!