Summary
- DFS problems have two kinds: One to get the number of all solutions. The other is to get all the solutions itself.
- To get the total number of solutions, usually you can use dynamic programming.
- To get all the solution, there is a fixed solution style. And you need to determine where it doesn’t give out.
# main method
res = []
self.helper(....)
return res
# auxiliary method
def helper(...):
if proper:
res.append()
return
for x in xrange(start,end):
do something
self.helper(...)
undo something
leetcode 46 Permutations
Question
Given a collection of numbers, return all possible permutations.
For example, [1,2,3]
have the following permutations: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].
Solution
recursion swap
Swap the current value and each of the values followed, then solve the rest permutation.
class Solution(object):
def permute(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
res = []
self.helper(nums,0,res)
return res
def helper(self,nums,start,res):
if start == len(nums):
res.append(list(nums))
return
for i in xrange(start,len(nums)):
if not self.contain_duplication(nums,start,i):
nums[start],nums[i] = nums[i],nums[start]
self.helper(nums,start+1,res)
nums[start],nums[i] = nums[i],nums[start]
def contain_duplication(self,nums,start,end):
for i in xrange(start,end):
if nums[i] == nums[end]:
return True
- increase insert
Every turn add a value in every possible position, and next turn and the new value on the base of the last turn. Use set to delete the duplication.
class Solution(object):
def permute(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
res = []
res.append([])
for i in xrange(len(nums)):
s = set()
for lst in res:
for j in xrange(len(lst)+1):
lst.insert(j,nums[i])
s.add(tuple(lst))
del lst[j]
res = [list(t) for t in s]
return res
leetcode 77 Combinations
Question
Given two integers n and k, return all possible combinations of k numbers out of 1 … n.
For example,
If n = 4 and k = 2, a solution is:
[
[2,4],
[3,4],
[2,3],
[1,2],
[1,3],
[1,4],
]
Solution
Recursion, when find a solution, back to the next value.
class Solution(object):
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
res = []
self.helper(n,k,[],res,1)
return res
def helper(self, n, k, lst, res, start):
if len(lst) == k:
res.append(list(lst))
return
for i in xrange(start,n+1):
lst.append(i)
self.helper(n,k,lst,res,i+1)
lst.pop()
leetcode 39 Combination Sum
Question
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Solution
Different from above, this time it is allowed to reuse the elements, So you have to start at i, not i+1.
class Solution(object):
def combinationSum(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
"""
res = []
candidates.sort()
self.helper(candidates,0,target,[],res)
return res
def helper(self,candidates,start,target,lst,res):
if target == 0:
res.append(list(lst))
return
elif target < 0:
return
for i in xrange(start,len(candidates)):
if i == start or candidates[i] != candidates[i-1]:
lst.append(candidates[i])
self.helper(candidates,i,target-candidates[i],lst,res)
lst.pop()
leetcode 40 Combination Sum II
Question
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
Solution
The only difference from above is that every time it begins at the next point.
class Solution(object):
def combinationSum2(self, candidates, target):
"""
:type candidates: List[int]
:type target: int
:rtype: List[List[int]]
"""
res = []
candidates.sort()
self.helper(candidates,target,0,[],res)
return res
def helper(self,candidates,target,start,lst,res):
if target <= 0:
if target == 0:
res.append(list(lst))
return
for i in xrange(start,len(candidates)):
if i == start or candidates[i] != candidates[i-1]:
lst.append(candidates[i])
self.helper(candidates,target-candidates[i],i+1,lst,res)
lst.pop()
leetcode 216 Combination Sum III
Question
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Ensure that numbers within the set are sorted in ascending order.
Solution
Same to above.
class Solution(object):
def combinationSum3(self, k, n):
"""
:type k: int
:type n: int
:rtype: List[List[int]]
"""
res = []
self.helper(k,n,1,[],res)
return res
def helper(self,k,n,start,lst,res):
if k == 0 or n <= 0:
if k == 0 and n == 0:
res.append(list(lst))
return
for i in xrange(start,10):
lst.append(i)
self.helper(k-1,n-i,i+1,lst,res)
lst.pop()