题解 BZOJ 1002 【[FJOI2007]轮状病毒】

简介: 题目链接 emm……正解:矩阵树定理,但是本宝宝不会求基尔霍夫矩阵。开始考场方法:手动模拟$n=1--5$时的答案(数不大,~~画画就出来了~~要画上半个小时)。画出来,答案是这样的:$1$ $5$ $16$ $45$ $121$然后简单根据题目出处和难度蒙了一下感觉第$n$项的答案和$n-1$,$n-2$的答案有关。

题目链接

emm……

正解:矩阵树定理,但是本宝宝不会求基尔霍夫矩阵。

开始考场方法:

手动模拟$n=1--5$时的答案(数不大,~~画画就出来了~~要画上半个小时)。

画出来,答案是这样的:$1$ $5$ $16$ $45$ $121$

然后简单根据题目出处和难度蒙了一下感觉第$n$项的答案和$n-1$,$n-2$的答案有关。

再看看增长率$(\frac{ans[n-1]}{ans[n-2]})$大概是$2--3$之间,并且比较靠近三。

于是,就想 $ans[n]$ $=$ $ans[n-1]*3$ $±$ $……$

又因为差的不是一个常数,所以
$ans[n]$ $=$ $3*ans[n-1]-ans[n-2]$ $±$ $……$

之后,惊喜的发现每个$ans[n]$ 与 $3*ans[n-1]-ans[n-2]$ 都差$2$。

最终,蒙了一个表达式:$ans[n]=$ $3*ans[n-1]-ans[n-2]+2$

看数据范围,需要高精。

之后一脸懵逼的$AC$了。

代码附上:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
//F(n)=3*F(n-1)-F(n-2)+2,F(1)=1,F(2)=5.;
int ans[103][10010];
int len[103];
int mul[10010];
void pluse(int x)
{
    int m=x-2;
    int n=x-1;
    int cnt=0;int l=len[n];
    for(int i=1;i<=l;i++)
    {
        mul[i]=(ans[n][i]*3+cnt)%10;
        cnt=(ans[n][i]*3+cnt)/10;
    }
    if(cnt!=0) mul[++l]=cnt;
    
    cnt=2;
    for(int i=1;i<=l;i++)
    {
        ans[x][i]=(mul[i]-ans[m][i]+cnt+100)%10;
        if(mul[i]-ans[m][i]+cnt<0) cnt=-1;
        else cnt=(mul[i]-ans[m][i]+cnt)/10;
    }
    if(cnt!=0) ans[x][l+1]=cnt,len[x]=l+1;
    else len[x]=l;
    return ;
}
int n;
int main()
{
    scanf("%d",&n);
    ans[1][1]=1;len[1]=1;
    ans[2][1]=5;len[2]=1;
    for(int i=3;i<=n;i++) pluse(i);
    for(int i=len[n];i>=1;i--) printf("%d",ans[n][i]);
    return 0;
}

 

相关文章
|
3月前
【LeetCode 17】5.7四数之和
【LeetCode 17】5.7四数之和
34 1
|
5月前
|
算法
LeetCode第18题四数之和
该文章介绍了 LeetCode 第 18 题四数之和的解法,与三数之和类似,通过先排序,再用双指针确定坐标并去重的方式解决,关键是确定四个坐标,前两个通过两层循环确定,后两个通过首尾双指针确定,同时总结了双指针可减少循环次数,使解决方式更简单高效。
LeetCode第18题四数之和
|
8月前
[leetcode] 四数之和 M
[leetcode] 四数之和 M
|
8月前
|
Java 测试技术 C++
leetcode-18:四数之和
leetcode-18:四数之和
47 0
|
算法 安全 Swift
LeetCode - #18 四数之和
不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。如果大家有建议和意见欢迎在文末留言,我们会尽力满足大家的需求。
leetcode:18.四数之和
这题和前面的一道三数之和类似,解题的思路都一样,这里直接选取两个基准就可以了,然后循环出所有的组合进行判断,如果正好相等那么就加入Set集合中。
63 0
|
人工智能 算法 Java
四数之和 (LeetCode 18)
四数之和 (LeetCode 18)
213 0
|
算法 前端开发 JavaScript