吴恩达《机器学习》课程总结(9)神经网络的学习

简介: 9.1代价函数(1)假设神经网络的训练样本有m个,每一个包含一组输入x和一组输出信号y,L表示神经网络的层数,Sl表示每一层的神经元个数,SL代表最后一层中处理单元的个数。则代价函数为(同样不对θ0正则化):9.2反向传播算法前向传播算法:用δ表示误差,则δ(4)=a(4)-y前一层的误差为:再前一层的误差为:。

9.1代价函数

(1)假设神经网络的训练样本有m个,每一个包含一组输入x和一组输出信号y,L表示神经网络的层数,Sl表示每一层的神经元个数,SL代表最后一层中处理单元的个数。

则代价函数为(同样不对θ0正则化):

9.2反向传播算法

前向传播算法:

用δ表示误差,则δ(4)=a(4)-y

前一层的误差为:

再前一层的误差为:

输入层不存在误差。

每一层有了误差之后,即可分别进行求偏导,然后更新θ。

9.3反向传播算法的直观理解

9.4实现注意:展开参数

9.5梯度检验

用某点领域的两个点的连线的斜率作为该点的估算值,然后用该值与神经网络计算出来的值作比较。

9.6随机初始化

参数的初始化应该随机的,如果是相同的值的话,第二层的所有激活单元都会有相同的值,后面也类似。

9.7综合起来

使用神经网络时的步骤:

(1)网络结构:第一件要做的事是选择网络结构,即决定选择多少层以及决定每层分别有多少单元。

第一层的单元数即为我们训练集的特征数量。

最后一层的单元数是我们训练集的结果的类的数量。

(2)训练神经网络:

1.参数的随机初始化;

2.利用正向传播方法计算所有的hθ(x);

3.编写计算代价函数J的代码;

4.利用反向传播方法计算所有的偏导数;

5.利用数值检验方法检验这些偏导数;

6.使用优化算法来最小化代价函数。

9.8自动驾驶

略。

 

相关文章
|
1月前
|
机器学习/深度学习 人工智能 数据挖掘
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
53 4
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
111 1
|
1月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
1月前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
72 0
|
2月前
|
机器学习/深度学习 人工智能 算法
#如何看待诺贝尔物理学奖颁给了机器学习与神经网络?#
2024年诺贝尔物理学奖首次颁发给机器学习与神经网络领域的研究者,标志着这一技术对物理学及多领域应用的深远影响。机器学习和神经网络不仅在生产、金融、医疗等行业展现出高效实用性,还在物理学研究中发挥了重要作用,如数据分析、模型优化和物理量预测等,促进了物理学与人工智能的深度融合与发展。
38 0
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】人工智能的历史发展与机器学习和神经网络
【人工智能】人工智能的历史发展与机器学习和神经网络
79 0
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。