吴恩达《机器学习》课程总结(10)应用机器学习的建议

简介: 10.1决定下一步该干什么当系统的效果很差时,你可能考虑到收集更多的样本,也可能:(1)尝试减少特征的数量;(2)尝试获得更多的特征;(3)尝试增加多项式特征;(4)尝试减少正则化程度λ;(5)尝试增加正则化程度λ。

10.1决定下一步该干什么

当系统的效果很差时,你可能考虑到收集更多的样本,也可能:

(1)尝试减少特征的数量;

(2)尝试获得更多的特征;

(3)尝试增加多项式特征;

(4)尝试减少正则化程度λ;

(5)尝试增加正则化程度λ。

如果做决策将是本章的内容。而不是盲目的选择一种策略。

10.2评估一个假设

将数据集分为训练集和测试集,在测试集上计算误差:

(1)对于线性回归模型,我们利用测试集数据计算代价函数J;

(2)对于逻辑回归模型,不仅可以利用测试集计算代价函数外,还可以利用误分类的比率来计算结果:

10.3模型选择和交叉验证集

将数据集按照8:2:2分为训练集,交叉验证集和测试集。

模型选择的方法:

(1)使用训练集训练处10个模型;

(2)用10个模型分别对交叉验证集计算得出交叉验证集误差;

(3)选取 代价函数数值最小的模型;

(4)用步骤3中选出的模型对测试集计算得出推广误差。

10.4诊断偏差和方差

(1)偏差(欠拟合)、方差(过拟合)

(2)误差随多项式次数的关系

次数低时,训练误差和验证误差都大,欠拟合;次数高时,训练误差小,验证误差大,过拟合。

训练误差和验证误差相近时,欠拟合;验证误差高于训练误差时过拟合。

10.5正则化和偏差/方差

(1)正则化的影响:

(2)λ的选择(以2为倍数增加,如0,0.01,0.02,0.04,0.08,0.16,0.32……): 

1.使用训练集训练出12个不同程度的正则化模型;

2.用12个模型分别对交叉验证集计算出交叉验证误差;

3.选择得出交叉验证误差最小的模型;

4.运用步骤3中选出模型对测试集计算得出推广误差。

(3)训练误差和验证误差与λ的关系:

10.6学习曲线

(1)学习曲线是将训练误差和交叉验证集误差作物训练样本数量(m)的函数绘制的图表:

(2)训练误差很大,高偏差(增加数据不会有改观)

(3)验证集误差与训练集误差相差很大,高方差(增加数据可以提高算法效果)

10.7决定下一步做什么

通过以上的诊断,下面是一些策略:

(1)获得更多的训练实例——解决高方差

(2)尝试减少特征的数量——解决高方差

(3)尝试获得更多的特征——解决高偏差

(4)尝试增加多项式——阶段高偏差

(5)尝试减小正则化程度——解决高偏差

(6)尝试增加正则化程度——解决高方差

一般使用较大的网络加上正则化会比使用小网络更有效。

相关文章
|
1月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
2天前
|
机器学习/深度学习 监控 算法
机器学习在图像识别中的应用:解锁视觉世界的钥匙
机器学习在图像识别中的应用:解锁视觉世界的钥匙
139 95
|
1月前
|
机器学习/深度学习 传感器 自动驾驶
探索机器学习在图像识别中的创新应用
本文深入分析了机器学习技术在图像识别领域的最新进展,探讨了深度学习算法如何推动图像处理技术的突破。通过具体案例分析,揭示了机器学习模型在提高图像识别准确率、效率及应用场景拓展方面的潜力。文章旨在为读者提供一个全面的视角,了解当前机器学习在图像识别领域的创新应用和未来发展趋势。
|
10天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
50 12
|
25天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
43 1
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
111 1
|
1月前
|
机器学习/深度学习 数据采集 算法
隧道裂纹识别:基于计算机视觉与机器学习的应用分享
隧道裂纹的自动检测通过深度学习与计算机视觉技术实现,替代了传统人工检查,提高了检测精度与效率。本文介绍了一套完整的裂纹检测流程,包括图像采集、预处理、裂纹检测与标定、后处理及结果展示,提供了图像处理与深度学习模型的基本代码框架,旨在帮助读者掌握隧道裂纹检测的实际应用方法。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
43 0
|
1月前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
72 0