吴恩达《机器学习》课程总结(13)聚类

简介: 13.1无监督学习:简介将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。13.2K-均值算法(1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。

13.1无监督学习:简介

将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。

13.2K-均值算法

(1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。

将每个样本归属到最近的聚类中心,然后重新计算每个类的中心变成新的聚类中心,重复以上步骤,直到聚类中心不变。

伪代码如下:

13.3优化目标

k-均值的最小化问题,就是每个样本点到对应聚类中心的距离之和:

与其他算法不同的是,k-均值每一次迭代都会是代价函数变小。

13.4随机初始化

(1)K应该小于样本数m;

(2)从样本中随机选取K个实例作为初始聚类中心。

K-均值可能会出现局部最小的情况,如下所示:

解决方案:多次运行该算法,最后在比较K-均值代价函数最小的结果,这种方法适用于K取较小的时候(2-10),K太大没有明显效果。

13.5选择聚类数

绘制聚类数与代价函数的图,然后选取出现斜率突然变小的地方的值(“肘部法则”)。

 

 

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
163 4
|
3月前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
86 0
|
5月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
51 1
|
5月前
|
机器学习/深度学习 数据采集 算法
【机器学习】K-Means聚类的执行过程?优缺点?有哪些改进的模型?
K-Means聚类的执行过程、优缺点,以及改进模型,包括K-Means++和ISODATA算法,旨在解决传统K-Means算法在确定初始K值、收敛到局部最优和对噪声敏感等问题上的局限性。
79 2
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】聚类算法中的距离度量有哪些及公式表示?
聚类算法中常用的距离度量方法及其数学表达式,包括欧式距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、余弦相似度等多种距离和相似度计算方式。
550 1
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】Python详细实现基于欧式Euclidean、切比雪夫Chebyshew、曼哈顿Manhattan距离的Kmeans聚类
文章详细实现了基于不同距离度量(欧氏、切比雪夫、曼哈顿)的Kmeans聚类算法,并提供了Python代码,展示了使用曼哈顿距离计算距离矩阵并输出k=3时的聚类结果和轮廓系数评价指标。
115 1
|
7月前
|
机器学习/深度学习 算法 搜索推荐
机器学习中的聚类
**文章摘要:** 本文介绍了聚类算法的基本概念、应用、实现流程和评估方法。聚类是一种无监督学习技术,用于将数据分为相似的组,如K-means、层次聚类、DBSCAN和谱聚类。K-means算法通过迭代优化质心,将数据点分配到最近的簇,直至质心不再变化。模型评估包括误差平方和(SSE)、肘部方法(确定最佳簇数)和轮廓系数法(Silhouette Coefficient),以量化聚类的紧密度和分离度。应用场景涵盖用户画像、广告推荐和图像分割等。在Python的sklearn库中,可以使用KMeans API进行聚类操作。
|
7月前
|
机器学习/深度学习 分布式计算 算法
在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)
【6月更文挑战第28天】在机器学习项目中,选择算法涉及问题类型识别(如回归、分类、聚类、强化学习)、数据规模与特性(大数据可能适合分布式算法或深度学习)、性能需求(准确性、速度、可解释性)、资源限制(计算与内存)、领域知识应用以及实验验证(交叉验证、模型比较)。迭代过程包括数据探索、模型构建、评估和优化,结合业务需求进行决策。
66 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
技术心得记录:机器学习笔记之聚类算法层次聚类HierarchicalClustering
技术心得记录:机器学习笔记之聚类算法层次聚类HierarchicalClustering
74 0
|
7月前
|
机器学习/深度学习 算法 搜索推荐
机器学习聚类算法
聚类算法是无监督学习技术,用于发现数据集中的自然群体,如用户画像、广告推荐等。常见的聚类算法包括K-Means,它基于距离分配样本至簇,适合球形分布;层次聚类则通过合并或分裂形成簇,能发现任意形状的簇;DBSCAN依据密度来聚类,对噪声鲁棒。KMeans API中`sklearn.cluster.KMeans(n_clusters=8)`用于指定簇的数量。评估聚类效果可使用轮廓系数、SSE等指标,Elbow方法帮助选择合适的K值。