吴恩达《机器学习》课程总结(13)聚类

简介: 13.1无监督学习:简介将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。13.2K-均值算法(1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。

13.1无监督学习:简介

将没有标签的样本分成不同的集合(簇),这种算法叫做聚类。常用的领域有市场分割、社交网络分析、计算机集群管理、了解星系等。

13.2K-均值算法

(1)K-均值是最普及的聚类算法,是一种迭代算法,假设需要将数据聚类成n个组,这时候首先随机选择K个点,称为聚类中心。

将每个样本归属到最近的聚类中心,然后重新计算每个类的中心变成新的聚类中心,重复以上步骤,直到聚类中心不变。

伪代码如下:

13.3优化目标

k-均值的最小化问题,就是每个样本点到对应聚类中心的距离之和:

与其他算法不同的是,k-均值每一次迭代都会是代价函数变小。

13.4随机初始化

(1)K应该小于样本数m;

(2)从样本中随机选取K个实例作为初始聚类中心。

K-均值可能会出现局部最小的情况,如下所示:

解决方案:多次运行该算法,最后在比较K-均值代价函数最小的结果,这种方法适用于K取较小的时候(2-10),K太大没有明显效果。

13.5选择聚类数

绘制聚类数与代价函数的图,然后选取出现斜率突然变小的地方的值(“肘部法则”)。

 

 

相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法
机器学习第12天:聚类
机器学习第12天:聚类
|
9天前
|
机器学习/深度学习 算法 数据挖掘
机器学习——DBSCAN 聚类算法
【6月更文挑战第8天】DBSCAN是一种基于密度的无监督聚类算法,能处理不规则形状的簇和噪声数据,无需预设簇数量。其优点包括自动发现簇结构和对噪声的鲁棒性。示例代码展示了其基本用法。然而,DBSCAN对参数选择敏感,计算效率受大规模数据影响。为改善这些问题,研究方向包括参数自适应和并行化实现。DBSCAN在图像分析、数据分析等领域有广泛应用,通过持续改进,将在未来保持重要地位。
31 2
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 吴恩达:机器学习的六个核心算法!
吴恩达教授在《The Batch》周报中介绍了机器学习领域的六个基础算法:线性回归、逻辑回归、梯度下降、神经网络、决策树和k均值聚类。这些算法是现代AI的基石,涵盖了从简单的统计建模到复杂的深度学习。线性回归用于连续变量预测,逻辑回归用于二分类,梯度下降用于优化模型参数,神经网络处理非线性关系,决策树提供直观的分类规则,而k均值聚类则用于无监督学习中的数据分组。这些算法各有优缺点,广泛应用于经济学、金融、医学、市场营销等多个领域。通过不断学习和实践,我们可以更好地掌握这些工具,发掘智能的乐趣。
37 1
算法金 | 吴恩达:机器学习的六个核心算法!
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】聚类算法中,如何判断数据是否被“充分”地聚类,以便算法产生有意义的结果?
【5月更文挑战第14天】【机器学习】聚类算法中,如何判断数据是否被“充分”地聚类,以便算法产生有意义的结果?
|
1月前
|
机器学习/深度学习 传感器 算法
【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
|
1月前
|
机器学习/深度学习 算法 数据可视化
【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
【5月更文挑战第12天】【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】在使用K-means聚类算法时,如何选择K的值?
【5月更文挑战第11天】【机器学习】在使用K-means聚类算法时,如何选择K的值?
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】K-means聚类的停止标准是什么?
【5月更文挑战第11天】【机器学习】K-means聚类的停止标准是什么?
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】解释什么是K-means聚类?
【5月更文挑战第11天】【机器学习】解释什么是K-means聚类?
|
1月前
|
机器学习/深度学习 人工智能 算法
【机器学习】K-means聚类有哪些应用?
【5月更文挑战第11天】【机器学习】K-means聚类有哪些应用?