【机器学习】K-Means聚类的执行过程?优缺点?有哪些改进的模型?

简介: K-Means聚类的执行过程、优缺点,以及改进模型,包括K-Means++和ISODATA算法,旨在解决传统K-Means算法在确定初始K值、收敛到局部最优和对噪声敏感等问题上的局限性。

面试题:K-Means聚类的执行过程?优缺点?有哪些改进的模型?

(1)简述K-means聚类的执行过程

  • 数据预处理,如归一化、离散点处理即可。

  • 随机选取K个簇中心

  • 定义代价函数(可以将簇内平方和函数作为代价函数)

  • 定义迭代次数t,重复下面过程直到代价函数收敛(或簇心不发生变化、或达到迭代次数)

    • 对于每一个样本x,将其分配到距离最近的簇

    • 对于每一个簇,计算簇内均值,作为该类簇新的中心。

(3) K-means算法有哪些优缺点?

优点

  • 对于大数据,计算复杂度是O(NKt),接近与线性,其中N是数据的样本数,K是簇 心数,t是迭代的轮次数。
  • 局部最优也能满足大部分的聚类需求

缺点

  • 需要人工预先确定初始K值,且该值和真实的数据分布未必吻合

  • K-means只能收敛到局部最优,效果收到初始值的影响很大

  • 容易收到噪点的影响

  • 样本点只能被划分到单一的类中

(4)有哪些改进的模型?

针对K-means的缺点,目前也有很多改进模型,主要包括如下两种:

  • K-means ++

k-means++主要是在初始选取K个簇心上做出了改进。假设已经选取了n个初始聚类中心,则在选择n+1个聚类中心时,距离当前n个聚类中心越远的点会有更好的概率被选择为第n+1类聚类的中心。聚类中心当然是互相隔离的越远越好,之后的算法步骤同于k-means。

  • ISODATA

ISODATA算法也是在K值上面改进,它在k-means算法的基础上增加了两个操作,第一是分裂操作,增加聚类中心数,即当属于某个类别的样本数过多时、分散程度较大时,把该类别分为两个子类别。第二是合并操作,对应着减少聚类中心数,即当属于某个类别的样本数过少时,把该类别去除。

目录
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
19天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
46 1
|
29天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
74 1
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
14天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
28 0
|
2月前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
|
25天前
|
机器学习/深度学习 算法
探索机器学习模型的可解释性
【10月更文挑战第29天】在机器学习领域,一个关键议题是模型的可解释性。本文将通过简单易懂的语言和实例,探讨如何理解和评估机器学习模型的决策过程。我们将从基础概念入手,逐步深入到更复杂的技术手段,旨在为非专业人士提供一扇洞悉机器学习黑箱的窗口。
|
2月前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
44 0