多维度分析2017年最热门的编程语言

简介: IEEE Spectrum网站发布了一年一度的编程语言排行榜,这也是他们发布的第四届编程语言排行榜。 据了解,IEEE Spectrum 的排序是来自 10 个重要线上数据源的综合,例如 Stack Overflow、Twitter、Reddit、IEEE Xplore、GitHub等,对 48 种语言进行排行。

IEEE Spectrum网站发布了一年一度的编程语言排行榜,这也是他们发布的第四届编程语言排行榜。

据了解,IEEE Spectrum 的排序是来自 10 个重要线上数据源的综合,例如 Stack Overflow、Twitter、Reddit、IEEE Xplore、GitHub等,对 48 种语言进行排行。

与其他网站调查的排行榜不同之处在于,IEEE Spectrum 可以让读者自己选择参数组合时的权重,得到不同的排序结果。考虑到典型的Spectrum 读者需求,他们提供了几个预设的权重 —— 如新兴的语言、雇主需求的语言、开源的热门语言等。大家可以定义自己的排行榜:

选择一种排名方法

有五种不同的语言排名方法,如下:

  • IEEE Spectrum:全面的排名
  • Trending:迅速增长的语言;
  • Jobs:雇主要求的语言;
  • Open:在开放源代码集线器上流行的语言;
  • Custom:您自己设计的排名。

按照趋势的发展得出的排行榜如下:

按照雇主要求的语言:

下图是参与者可以自行调整权重:

读者可以自行调整权重

IEEE Spectrum 给出的编程语言排行榜如下:

IEEE Spectrum全面排行

从以上的数据排名,我们可以得出以下结论:

  1. Python 的排名从去年开始就借助人工智能的热潮持续上升,现在它已经成为了第一名,而且也比较稳定。
  2. 排在前四名的语言 Python、C、Java 和 C++都拥有广大的用户群体,并且他们的用户总量也十分相近。
  3. 排名显示Python在C之前,但实际上,在对公司招聘所要求的基本语言分析中,C 语言的需求甚至还要在 Python 之前。
  4. 如果我们从语言用户增速的角度来看的话,Python 仍然是最快的。紧接下来就是 C、C++、Java。
  5. C# 已经重新进入前五名。不过今年有一个新的发现,没有新语言进入排名,似乎现有语言开始进入巩固代码的阶段,开发者需要时间消化那些为云服务、移动端和大数据应用等创造的新工具。

用人单位更需要什么语言的工程师?

我们可以根据数据得出Java 和 C 是招聘上最受欢迎语言,它们甚至都超过了 Python。

很大的原因是 Java 能应用于多平台,并且在企业级网页应用和移动端应用开发中占据了极其重要的地位,同时各种互联网公司的产品都需要使用 Java 来实现。

下面的排名是按照设计自由度排列的,我们可以对这些语言进行定制化的程度越高,排名越靠前。

总结

无论从哪个维度的排序来看,排名前四的语言是Python、Java、C、C++,第五的语言,在不同的情况下有所改变。

我们可以根据这个灵活的排名榜,来选择自己的入门语言,优先推荐Python或者Java,于初学者而言,C相对来讲是难度要大些。

Creative Commons License本文基于 Creative Commons Attribution 2.5 China Mainland License发布,欢迎转载,演绎或用于商业目的,但是必须保留本文的署名 http://www.cnblogs.com/luminji(包含链接)。如您有任何疑问或者授权方面的协商,请给我留言。
目录
相关文章
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言 一种功能强大的数据分析、统计建模 可视化 免费、开源且跨平台 的编程语言
R语言 一种功能强大的数据分析、统计建模 可视化 免费、开源且跨平台 的编程语言
93 1
|
10月前
|
机器学习/深度学习 供应链 算法
【数据分析模型】描述性 vs 预测性 vs 规范性 vs 诊断分析
【数据分析模型】描述性 vs 预测性 vs 规范性 vs 诊断分析
|
12月前
|
机器学习/深度学习 人工智能 数据可视化
十种数据分析方法
数据分析方法逐渐成为商业分析、市场营销、金融和医疗领域等多个行业所必需的技能。
329 0
|
JSON 缓存 监控
【翻译】结构化日志的价值 - 更好地理解系统
一种比较可行的克服这些困难的方案是以一种一致的、明确的和机器可读的格式来记录系统中最有价值的信息。这种方法称为结构化日志记录。在配套工具的支持下,这些追踪数据有助于更深入地了解你的系统的运行活动,使你能够理解组件之间的相互作用。
90 0
|
机器学习/深度学习 算法 安全
数据分析中常见的"数据陷阱" !!!
数据分析中常见的"数据陷阱" !!!
301 0
数据分析中常见的"数据陷阱" !!!
|
SQL 数据可视化 数据挖掘
深度讲述6款 “数据分析” 工具,告诉你数据分析应该学这个!
深度讲述6款 “数据分析” 工具,告诉你数据分析应该学这个!
深度讲述6款 “数据分析” 工具,告诉你数据分析应该学这个!
|
监控 数据挖掘 BI
数据分析7大能力:梳理数据需求
今天分享数据分析师必备的工作能力——需求梳理。需求梳理很不起眼,甚至很多小伙伴感受不到他的存在。但它结结实实影响到大家的下班时间和绩效。
820 0
|
机器学习/深度学习 SQL 算法
从开发视角看数据分析
导读:数据分析就是要从杂乱无章的数据中将某个或者某些核心指标做提炼、归纳、总结,找到某个规律,但往往得到的结论不足以支撑下一步的动作,劳心劳力最后无果,又要再继续深挖。本文并不是一篇专业的数据分析方法论,而是从研发角度对自己做的一些数据分析进行思考和总结。
从开发视角看数据分析
|
数据采集 存储 数据可视化
利用Python+NBI大数据可视化工具实现采集到分析整体方案
大家可能都比较熟悉python这门技术语言,确实在大数据火起来之后python的热度一度高涨,不可否认的是python在数据采集这块真的很好用,很方便。 那今天给大家介绍一下通过python采集数据,通过NBI大数据可视化工具做数据分析是如何实现的,首先我们看一下整体方案架构:
利用Python+NBI大数据可视化工具实现采集到分析整体方案
|
数据可视化 BI
技术人最不该忽视可视化数据分析!
阿里妹导读:在这个“人人都是数据分析师”的时代,阿里的同学几乎都在参与数据的采集、加工与消费。数据可视化作为连接“加工——消费”的重要一环,其质量至关重要。优秀的可视化能促成卓越洞见,糟糕的内容则让所有的努力失去意义。今天,阿里高级产品经理沉砂为我们详细介绍数据可视化工具以及如何选择有效图表。
8684 0

相关产品

  • 云迁移中心