深度学习最佳实践系列——权重w初始化

简介: 本文是深度学习最佳实践系列博客之权重初始化,主要介绍权重初始化的相关问题及方法,文中提及的权重初始化方法均可以应用于普通的神经网络、卷积神经网络和递归神经网络之中。


       作为深度学习的初学者,我有意识到的一件事情,即网络上没有太多的在线文档能够涵盖所有深层次的学习技巧。都是一些比较零碎的实践技巧,比如权重初始化、正则化及循环学习率等,这些可以使得训练和调试神经网络变得更容易和更高效。本系列博客内容将尽可能多地介绍一些实践细节,以便你更容易实现深度学习方法。
       在撰写本文时,假定读者已经对如何训练神经网络有着一个基本的理解。理解权重(weight)、偏置(bias)、隐藏层(hidden layer)、激活函数(activation function)等内容将使你看本篇文章会更加清晰。如果你想建立一个深度学习的基础, 推荐这门课程
       注明:本文提到神经网络的层时,表示的是一个简单的神经网络层,即全连接层。当然,本文所讲解的一些方法也适用于卷积和循环神经网络。在本文中,将讨论与权重矩阵初始化相关的问题以及如何减轻它们的方法。在此之前,先介绍一些将要使用的基本知识和符号。

基础和符号

       考虑一个L层神经网络,它具有L-1个隐藏层和1个输出层。第l层的参数(权重和偏置)表示为

2


       除了权重和偏置之外,在训练过程中,还会计算以下中间变量

3


       一个神经网络的训练过程一般由以下4个步骤组成:
  • 1.初始化权重和偏置
  • 2.前向传播(forward propagation):使用输入X,权重W和偏置b,对于每一层计算Z和A。在最后一层中,计算f(A ^(L-1)),它可能会是S形函数softmax或线性函数的A ^(L-1),并得到预测值y_hat。
  • 3.计算损失函数(loss function):该函数是理想标签y和预测标签y_hat二者的函数,它表明预测值离实际目标值有多大差距,训练神经网络模型的目的就是要尽量减少损失函数的值。
  • 4.反向传播(back propagation):在这一过程中,需要计算损失函数f(y,y_hat)相对于A、W和b的梯度,分别称为dA、dW和db。使用这些梯度值,将参数的值从最后一层反向更新到第一层。
  • 5.对n次迭代重复步骤2-4,直到我们觉得已经最小化了损失函数,且没有过拟合训练数据时则表明训练结束。
           下面快速浏览第2步、第3步和第4步。以一个2层网络为例,即只有一个隐藏层。(注意,为了简单起见,在这里没有添加偏置):

4前向传播


5反向传播

权重W初始化

       建立网络时首先需要注意的是要正确初始化权重矩阵。下面让我们考虑在训练模型时可能导致出现问题的两种初始化情况:

1.将所有权重初始化为0

       这样的操作将使得模型等价于一个线性模型。将所有权重设为0时,对于W ^ l中的每个w而言,损失函数的导数都是相同的,因此在随后的迭代中所有权重具有相同的值,这会使得隐藏单元变得对称,并继续运行设置的n次迭代。因此,将权重设置为零会使得网络的性能并不比线性模型更好。值得注意的是,将偏置设置为0不会产生任何麻烦,因为非零权重可以打破对称性,即使偏置为0,每个神经元的值仍然不同。

2.随机初始化权重

       按照标准正态分布(Python中可以用np.random.randn(size_l,size_l-1)实现)随机初始化权重可能会导致2个问题——梯度消失(vanishing gradient)或梯度爆炸(exploding gradient):
       a)梯度消失——对于深度网络,任何激活函数abs(dW)值将随着反向传播过程中每一层向后移动而变得越来越小。在这种情况下,较早的层次变化是最慢的。
权重更新较小,进而导致收敛速度变慢,这使会使得损失函数的优化变得缓慢。在最坏的情况下,可能会完全停止神经网络的进一步训练。
更具体地说,在sigmoid(z)和tanh(z)的情况下,如果权重值很大,那么梯度将会很小,从而有效地防止权重改变它们的值,这是因为abs(dW)每次迭代后会稍微增加或者变得越来越小。使用RELU(z)作为激活函数时,梯度消失通常不会成为问题,因为负(和零)输入的梯度值总为0,其正输入时梯度的值总为1。
       b)梯度爆炸——这与梯度消失完全相反。假设你有非负的、大的权重值和小的激活值A(可能是sigmoid(z)的情况)。当这些权重沿着层次相乘时,会导致损失函数发生较大变化。因此,梯度值也会很大,这意味着W的变化将大幅增加W-⍺* dW。
       这可能导致模型在最小值附近一直振荡,一次又一次错过了最佳值,模型将永远不会得到最好的学习!梯度爆炸的另一个影响是梯度的超大值可能会导致数字溢出,从而导致不正确的计算或引入NaN,这也可能导致出现损失值为NaN的情况。

最佳实践

       1.使用RELU/leaky RELU作为激活函数,因为它对梯度消失/爆炸问题(特别是对于不太深的网络而言)相对健壮。在 leaky RELU作为激活函数的情况下,从来不会有梯度为0的时候,因此模型参数更新将永远不会停止,训练仍会继续训练。
       2.对于深度网络,可以使用启发式来根据非线性激活函数初始化权重。在这里,并不是从标准正态分布绘图,而是用方差为k /n的正态分布初始化W,其中k的值取决于激活函数。尽管这些启发式方法不能完全解决梯度消失/爆炸问题,但它们在很大程度上有助于缓解这一问题。最常见的启发式方法是:
       a)对于RELU(z)——将随机生成的W值乘以:

6


        b)对于tanh(z) ——也被称为Xavier初始化。与前一个方法类似,但k的值设置为1而不是设置为2。

7


       在TensorFlow中可以用W = tf.get_variable('W',[dims],initializer)实现,其中initializer = tf.contrib.layers.xavier_initializer( )。
        c)另一个常用的启发式方法

8


       这些方法都可以作为权重w初始化方法,都有缓解爆炸或消失梯度的可能性。这样设置的权重w既不会太大,也不会太小于1。因此, 梯度不会消失或爆炸,有助于避免收敛缓慢,同时确保模型不会一直在最小值附近摇晃。当然,还存在上述方法的其它变体,大致的思想都是使参数的方差最小化。
        3.梯度剪枝——这是处理梯度爆炸问题的另一种方法。我们可以设置一个阈值, 如果一个梯度的选择函数大于这个设定的阈值,那么我们就将它设置为另一个值。例如,如果l2_norm(W)>阈值,则将L2范数超过特定阈值时的梯度值归一化为-W = W * threshold / l2_norm(W)。
       需要注意的一点是,就是上述内容都是谈的权重W的各种初始化方法,并没有介绍任何偏置b的初始化方法。这是因为每层偏置的梯度仅取决于该层的线性激活值,而不取决于较深层的梯度值。因此, 对于偏置项不会存在梯度消失和梯度爆炸问题。如前所述,可以安全地将偏置b初始化为0。

结论

       在本文中,着重介绍了权重初始化方法以及一些缓解技术。如果本文漏掉了一些与此主题相关的任何其他有用的见解,希望读者在留言出指出。在接下来的博客中,将进一步讨论正则化方法,以减少过拟合和梯度检查——这是一种使调试更简单的技巧。

参考

数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

作者信息

Neerja Doshi,数据科学,计算机视觉专业
本文由阿里云云栖社区组织翻译。
文章原标题《Deep Learning Best Practices – Weight Initialization》,译者:海棠,审校:Uncle_LLD。
文章为简译,更为详细的内容,请查看原文

相关文章
|
机器学习/深度学习 资源调度 监控
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
深度学习基础入门篇[六]:模型调优,学习率设置(Warm Up、loss自适应衰减等),batch size调优技巧,基于方差放缩初始化方法。
|
机器学习/深度学习
深度学习相关概念:权重初始化
权重初始化(weight initialization)又称参数初始化,在深度学习模型训练过程的本质是对weight(即参数 W)进行更新,但是在最开始训练的时候是无法更新的,这需要每个参数有相应的初始值。在进行权重初始化后,神经网络就可以对权重参数w不停地迭代更新,以达到较好的性能
472 0
|
机器学习/深度学习 数据挖掘 PyTorch
# 【深度学习】:《PyTorch入门到项目实战》第八天:权重衰退(含源码)
前一节我们描述了过拟合的问题,虽然我们可以通过增加更多的数据来减少过拟合,但是成本较高,有时候并不能满足。因此现在我们来介绍一些正则化模型的方法。在深度学习中,权重衰退是使用较为广泛的一种正则化方法。具体原理如下。
# 【深度学习】:《PyTorch入门到项目实战》第八天:权重衰退(含源码)
|
机器学习/深度学习 PyTorch 测试技术
【从零开始学习深度学习】13. 防止过拟合方法:权重衰减(L2惩罚项)介绍及示例演示
【从零开始学习深度学习】13. 防止过拟合方法:权重衰减(L2惩罚项)介绍及示例演示
【从零开始学习深度学习】13. 防止过拟合方法:权重衰减(L2惩罚项)介绍及示例演示
|
机器学习/深度学习 资源调度 Windows
深度学习:Xavier初始化理论+代码实现
深度学习:Xavier初始化理论+代码实现
402 0
深度学习:Xavier初始化理论+代码实现
|
机器学习/深度学习 对象存储 Python
【深度学习】1-权重参数全相同值初始化,导致无法训练-python
【深度学习】1-权重参数全相同值初始化,导致无法训练-python
260 0
【深度学习】1-权重参数全相同值初始化,导致无法训练-python
|
机器学习/深度学习 网络架构 算法
告别深度学习炼丹术!谷歌大脑提出“权重无关”神经网络
无需权重训练!谷歌再向深度学习炼丹术发起“攻击”。
1291 0
|
机器学习/深度学习 测试技术 API
深度学习Trick——用权重约束减轻深层网络过拟合|附(Keras)实现代码
深度学习小技巧,约束权重以降低模型过拟合的可能,附keras实现代码。
1926 0
|
机器学习/深度学习 存储 人工智能
【深度学习之美】损失函数减肥用,神经网络调权重(入门系列之六)
有人开玩笑说,男人有两大烦恼:一是把别人的肚子搞大了,二是把自己的肚子搞大了。对于后者,除了减(jian)肥(shen),似乎别无他法。可你知道吗?这减肥背后的机理,和前馈神经网络利用损失函数,来反向调节各个神经元之间的连接权重,其实是一样一样的。为啥咧?
2944 1
|
22小时前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第13天】 随着计算机视觉和人工智能技术的飞速发展,深度学习已成为推动图像识别领域进步的核心动力。本文将探讨深度学习技术在图像识别中的应用,并分析其面临的主要挑战。我们将从卷积神经网络(CNN)的基础出发,探索其在图像分类、目标检测和语义分割等方面的应用实例,并针对数据偏差、模型泛化能力、计算资源需求等关键问题展开讨论。通过案例分析和性能比较,我们旨在为读者提供一个关于深度学习在图像识别中应用的全面视角,同时指出未来的研究方向和技术趋势。