用大数据思维做运维监控

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 我们将大数据处理的方式和思想应用在运维工作上。即使你现在所在的公司没有数据团队支撑,也完全可以通过现有团队完成这件事情的。
今天一大早就看到了一篇文章,叫【大数据对于运维的意义】。该文章基本上是从三个层面阐述的:
  1. 工程数据,譬如工单数量,SLA可用性,基础资源,故障率,报警统计
  2. 业务数据,譬如业务DashBoard,Trace调用链,业务拓扑切换,业务指标,业务基准数据,业务日志挖掘
  3. 数据可视化
当然,这篇文章谈的是运维都有哪些数据,哪些指标,以及数据呈现。并没有谈及如何和大数据相关的架构做整合,从而能让这些数据真的变得活起来。比较凑巧的是,原先百度的桑文峰的分享也讲到日志的多维度分析,吃完饭的时候,一位优酷的朋友也和我探讨了关于业务监控的的问题。而我之前发表在肉饼铺子里的一篇文章【 大数据给公司带来了什么】 也特地提到了大数据对于整个运维的帮助,当时因为这篇内容的主旨是罗列大数据的用处,自然没法细讲运维和大数据的整合这一块。
上面的文字算引子,在步入正式的探讨前,有一点我觉得值得强调:
虽然这里讲的是如何将大数据思维/架构应用于运维,平台化运维工作,但是和大数据本质上没有关系,我们只是将大数据处理的方式和思想应用在运维工作上。所以,即使你现在所在的公司没有数据团队支撑,也是完全可以通过现有团队完成这件事情的。

运维监控现状

很多公司的运维的监控具有如下特质:
  1. 只能监控基础运维层次,通过zabbit等工具提供服务器,CPU,内存等相关的监控。这部分重要,但确实不是运维的核心。
  2. 对业务的监控是最复杂的,而现在很多公司的要么还处于Shell脚本的刀耕火种阶段,要么开发能力较强,但是还是东一榔头西一棒子,不同的业务需要不同的监控系统,人人都可以根据的自己的想法开发一个监控的工具也好,系统也好,平台也好。总之是比较凌乱的。
  3. 使用第三方的监控平台。这个似乎在Rails/NodeJS/Pythone相关语系开发的产品中比较常见。我不做过多评价,使用后冷暖自知。
当然也有抽象的很好的,比如点评网的运维监控据说就做的相当好,运维很闲,天天没事就根据自己的监控找开发的搽,让开发持续改进。不过他们的指导思想主要有两个:
  1. 运维自动化。怎么能够实现这个目标就怎么搞,这严重依赖于搞的人的规划能力和经验。
  2. 抽象化,根据实际面临的问题做出抽象,得到对应的系统,比如需要发布,于是又发布系统,需要管理配置文件,所以有配管系统,需要日志分析所以有了有日志分析系统。然而这样是比较零散的。
有点扯远,我们还是focus在监控上。
如果以大数据的思维去思考,我们应该如何做好监控这件事情?

罗列出你的数据源

【大数据对于运维的意义】 这篇文章也讲了,主要有工程数据,业务数据。所有的数据源都有一个共性,就是日志。无论文本的也好,二进制的也好。所以日志是整个信息的源头。日志包含的信息足以让我们追查到下面几件事情:
  • 系统健康状况监控
  • 查找故障根源
  • 系统瓶颈诊断和调优
  • 追踪安全相关问题

从日志我们可以挖掘出什么?

我觉得抽象起来就一个: 指标。指标可以再进行分类,
  1. 业务层面,如团购业务每秒访问数,团购券每秒验券数,每分钟支付、创建订单等
  2. 应用层面,每个应用的错误数,调用过程,访问的平均耗时,最大耗时,95线等
  3. 系统资源层面:如cpu、内存、swap、磁盘、load、主进程存活等
  4. 网络层面: 如丢包、ping存活、流量、tcp连接数等
每个分类里的每个小点其实都是一个指标。

如何统一实现

千万不要针对具体问题进行解决,大数据架构上的一个思维就是:我能够提供一个平台让大家方便解决这些问题么? 而不是,这个问题我能解决么?
先来看看架构图:
2972e21ab5a54e82794d858579ac7b1144f940f7
log-collect.png
因为目前我负责应用层的研发,业务还比较少,主要就需要监控三个系统:
  1. 推荐
  2. 搜索
  3. 统一查询引擎
所以监控的架构设计略简单些。如果你希望进行日志存储以及事后批量分析,则可以采用淘宝的这套架构方式:
093f956d719d53283298cf35cf68f8f0d94afb78
log-collect2.png
稍微说明下,日志收集Agent可以使用Flume,鹰眼Storm集群,其实就是Storm集群,当然有可能是淘宝内部Java版的,Storm(或第一幅图的SparkStreaming)做两件事情
  1. 将日志过滤,格式化,或存储起来
  2. 进行实时计算,将指标数据存储到HBase里去
到目前为止,我们没有做任何的开发,全部使用大数据里通用的一些组件。至于这些组件需要多少服务器,就看对应的日志量规模了,三五台到几百台都是可以的。需要开发的地方只有两个点,有一个是一次性的,有一个则是长期。
先说说一次性的,其实就是大盘展示系统。这个就是从HBase里取出数据做展示。这个貌似也有开源的一套,ELK。不过底层不是用的HBase存储,而是ES。这里就不详细讨论。长期的则是SparkStreaming(淘宝是使用Storm,我建议用SparkStreaming,因为SparkStreaming可以按时间窗口,也可以按量统一做计算),这里你需要定义日志的处理逻辑,生成我上面提到的各项指标。这里有一个什么好处呢,就是平台化了,对新的监控需求响应更快了,开发到上线可能只要几个小时的功夫。如果某个系统某天需要一个新的监控指标,我们只要开发个SparkStreaming程序,丢到平台里去,这事就算完了。
第一幅图的平台我是已经实现了的。我目前在SparkStreaming上只做了三个方面比较基础的监控,不过应该够用了。
  1. 状态码大盘。HTTP响应码的URL(去掉query参数)排行榜。比如你打开页面就可以看到发生500错误的top100的URL,以及该URL所归属的系统。
  2. 响应耗时大盘。URL请求耗时排行榜。比如你打开页面就可以看到5分钟内平均响应耗时top100的URL(去掉query参数)。
  3. 还有就是Trace系统。类似Google的Dapper,淘宝的EagleEye。给出一个唯一的UUID,可以追踪到特定一个Request的请求链路。每个依赖服务的响应情况,比如响应时间。对于一个由几个甚至几百个服务组成的大系统,意义非常大,可以方便的定位出到底是那个系统的哪个API的问题。这个最大的难点是需要统一底层的RPC/HTTP调用框架,进行埋点。因为我使用的是自研的ServiceFramework框架,通讯埋点就比较简单。如果是在一个业务线复杂,各个系统使用不同技术开发,想要做这块就要做好心理准备了。
现在,如果你想要监控一个系统是不是存活,你不在需要取写脚本去找他的pid看进程是不是存在,系统发现在一定的周期内没有日志,就可以认为它死了。而系统如果有异常,比如有大量的慢查询,大盘一定能展示出来。
描述到这,我们可以看到,这套架构的 优势在哪:
  1. 基本上没有需要自己开发的系统。从日志收集,到日志存储,到结果存储等,统统都是现成的组件。
  2. 可扩展性好。每个组件都是集群模式的,没有单点故障。每个组件都是可水平扩展的,日志量大了,加机器就好。
  3. 开发更集中了。你只要关注日志实际的分析处理,提炼指标即可。

大数据思维

对于运维的监控,利用大数据思维,需要分三步走:
  1. 找到数据
  2. 分析定义从数据里中我能得到什么
  3. 从大数据平台中挑选你要的组件完成搭积木式开发
所有系统最可靠的就是日志输出,系统是不是正常,发生了什么情况,我们以前是出了问题去查日志,或者自己写个脚本定时去分析。现在这些事情都可以整合到一个已有的平台上,我们唯一要做的就是定义处理日志的的逻辑。
这里有几点注意的:
  1. 如果你拥有复杂的产品线,那么日志格式会是一个很痛苦的事情。以为这中间Storm(或者SparkStreaming)的处理环节你需要做大量的兼容适配。我个人的意见是,第一,没有其他更好的办理,去兼容适配吧,第二,推动大家统一日志格式。两件事情一起做。我一个月做不完,那我用两年时间行么?总有一天大家都会有统一的日志格式的。
  2. 如果你的研发能力有富余,或者有大数据团队支撑,那么可以将进入到SparkStreaming中的数据存储起来,然后通过SparkSQL等做即席查询。这样,有的时候原先没有考虑的指标,你可以直接基于日志做多维度分析。分析完了,你觉得好了,需要固化下来,那再去更新你的SparkStreaming程序。

后话

我做上面第一幅图架构实现时,从搭建到完成SparkStreaming程序开发,到数据最后进入HBase存储,大概只花了一天多的时间。当然为了完成那个Trace的指标分析,我修改erviceFramework框架大约改了两三天。因为Trace分析确实比较复杂。当然还有一个比较消耗工作量的,是页面可视化,我这块自己还没有能力做,等招个Web开发工程师再说了。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
运维 算法 数据可视化
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】2 方案设计与实现-Python
文章详细介绍了参加2021高校大数据挑战赛中智能运维异常检测与趋势预测任务的方案设计与Python实现,包括问题一的异常点和异常周期检测、问题二的异常预测多变量分类问题,以及问题三的多变量KPI指标预测问题的算法过程描述和代码实现。
75 0
|
21天前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
75 10
|
4月前
|
数据采集 运维 Cloud Native
Flink+Paimon在阿里云大数据云原生运维数仓的实践
构建实时云原生运维数仓以提升大数据集群的运维能力,采用 Flink+Paimon 方案,解决资源审计、拓扑及趋势分析需求。
18507 54
Flink+Paimon在阿里云大数据云原生运维数仓的实践
|
3月前
|
存储 运维 Cloud Native
"Flink+Paimon:阿里云大数据云原生运维数仓的创新实践,引领实时数据处理新纪元"
【8月更文挑战第2天】Flink+Paimon在阿里云大数据云原生运维数仓的实践
277 3
|
3月前
|
机器学习/深度学习 运维 算法
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
对2021高校大数据挑战赛中智能运维异常检测与趋势预测赛题的赛后总结与分析,涉及赛题解析、不足与改进,并提供了异常检测、异常预测和趋势预测的方法和模型选择的讨论。
109 0
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
|
4月前
|
分布式计算 运维 DataWorks
MaxCompute操作报错合集之用户已在DataWorks项目中,并有项目的开发和运维权限,下载数据时遇到报错,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
4月前
|
SQL Java 大数据
开发与运维应用问题之大数据SQL数据膨胀如何解决
开发与运维应用问题之大数据SQL数据膨胀如何解决
|
4月前
|
数据采集 监控 关系型数据库
大数据运维之数据质量管理
大数据运维之数据质量管理
112 0
|
4月前
|
运维 监控 大数据
部署-Linux01,后端开发,运维开发,大数据开发,测试开发,后端软件,大数据系统,运维监控,测试程序,网页服务都要在Linux中进行部署
部署-Linux01,后端开发,运维开发,大数据开发,测试开发,后端软件,大数据系统,运维监控,测试程序,网页服务都要在Linux中进行部署
|
6月前
|
运维 Cloud Native 安全
【专栏】随着信息技术发展,运维正向自动化、智能化转型,云原生运维成为主流,大数据驱动运维决策,而安全运维日益重要
【4月更文挑战第29天】随着信息技术发展,运维正向自动化、智能化转型,云原生运维成为主流,大数据驱动运维决策,而安全运维日益重要。面对技术更新快、人才短缺和复杂性增加的挑战,企业需建立培训体系,加强人才培养,优化运维管理,以适应未来运维需求。随着这些趋势,运维领域将迎来更广阔的发展前景。
198 2