阿里云Kubernetes Service Mesh实践进行时(4): 分布式追踪

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 本系列前面文章中已经介绍了利用阿里云Kubernetes容器服务,如何快速搭建一套用于连接、管理以及安全化微服务的开放平台Istio,为应用引入和配置多个相关服务。本文通过一个示例演示了如何在启用了Istio的应用中使用分布式追踪系统Jaeger。

概述

注意:在使用阿里云Kubernetes容器服务Istio 1.0的过程中,如果遇到类似CRD版本问题,请参考我们提供的问题分析。 我们会持续更新遇到的问题及其解决方法。

本系列前面文章中已经介绍了利用阿里云Kubernetes容器服务,如何快速搭建一套用于连接、管理以及安全化微服务的开放平台Istio,为应用引入和配置多个相关服务。

阿里云Kubernetes Service Mesh实践进行时(1): Istio初体验
阿里云Kubernetes Service Mesh实践进行时(2): 通过示例深入Istio
阿里云Kubernetes Service Mesh实践进行时(3): 智能路由
阿里云Kubernetes Service Mesh实践进行时(4): 分布式追踪
阿里云Kubernetes Service Mesh实践进行时(5): 遥测数据收集、查询及可视化
阿里云Kubernetes Service Mesh实践进行时(6): 故障诊断与检测工具Weave Scope
阿里云Kubernetes Service Mesh实践进行时(7): 可观测性分析服务Kiali

本文通过一个示例演示了如何在启用了Istio的应用中使用分布式追踪系统Jaeger。

在由单体架构迁移至微服务时,传统的监视工具往往无法提供跨越不同服务的可见性。因此就有必要引入分布式跟踪的工具。

为了解决不同的分布式追踪系统 API 不兼容的问题,诞生了 OpenTracing 规范。OpenTracing 是一个轻量级的标准化层,它位于应用程序/类库和追踪或日志分析程序之间。OpenTracing 已进入 CNCF,正在为全球的分布式追踪,提供统一的概念和数据标准。它通过提供平台无关、厂商无关的 API,使得开发人员能够方便的添加(或更换)追踪系统的实现。

Jaeger 是 CNCF下的一款开源分布式追踪系统,兼容 OpenTracing API。

image.png

Istio分布式调用链跟踪

Jaeger收集启用了Istio的应用程序的调用链信息,点击阿里云容器服务页面中左侧服务栏,找到 tracing 服务,如下:

image.png

点击 tracing 服务的外部地址,会看到如下一个Jaeger UI页面:

image.png

Jaeger UI显示了分布式服务追踪信息的结果,右上角显示的时刻和持续时间散点图用可视化方式呈现了结果,并提供了向下挖掘能力。

用户可以选择用多种不同视图对追踪结果进行可视化,例如追踪时段内的直方图,或服务在追踪过程中的累积时间:

image.png

除了使用默认的时序渲染方式,还可以通过其他视图渲染为有向无环图或关键路径图:

image.png

实现原理

尽管Istio代理能够自动发送spans,但他们需要一些标识来将整个调用链关系联系起来。应用程序需要传入合适的HTTP header信息,便于代理发送span信息到Jaeger时,span可以准确地把每次调用关联起来。

为此,应用程序需要从传入的请求中收集如下的header信息并将其传入到每个传出请求:

x-request-id
x-b3-traceid
x-b3-spanid
x-b3-parentspanid
x-b3-sampled
x-b3-flags
x-ot-span-context

示例服务中的productpage应用(Python应用)从HTTP请求中提取所需的header信息:

def getForwardHeaders(request):
    headers = {}

    user_cookie = request.cookies.get("user")
    if user_cookie:
        headers['Cookie'] = 'user=' + user_cookie

    incoming_headers = [ 'x-request-id',
                         'x-b3-traceid',
                         'x-b3-spanid',
                         'x-b3-parentspanid',
                         'x-b3-sampled',
                         'x-b3-flags',
                         'x-ot-span-context'
    ]

    for ihdr in incoming_headers:
        val = request.headers.get(ihdr)
        if val is not None:
            headers[ihdr] = val
            #print "incoming: "+ihdr+":"+val

    return headers

在应用程序中调用其他服务时,这些header信息会被传播下去形成一个调用链。

总结

我们可以利用阿里云Kubernetes容器服务,快速搭建一套用于连接、管理以及安全化微服务的开放平台Istio,为应用引入和配置多个相关服务。本文通过一个示例演示了如何在启用了Istio的应用中使用分布式追踪系统Jaeger。 欢迎大家使用阿里云上的容器服务,快速搭建微服务的开放治理平台Istio,比较简单地集成到自己项目的微服务开发中。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
15天前
|
人工智能 安全 Java
分布式 Multi Agent 安全高可用探索与实践
在人工智能加速发展的今天,AI Agent 正在成为推动“人工智能+”战略落地的核心引擎。无论是技术趋势还是政策导向,都预示着一场深刻的变革正在发生。如果你也在探索 Agent 的应用场景,欢迎关注 AgentScope 项目,或尝试使用阿里云 MSE + Higress + Nacos 构建属于你的 AI 原生应用。一起,走进智能体的新世界。
214 25
|
9天前
|
关系型数据库 Apache 微服务
《聊聊分布式》分布式系统基石:深入理解CAP理论及其工程实践
CAP理论指出分布式系统中一致性、可用性、分区容错性三者不可兼得,必须根据业务需求进行权衡。实际应用中,不同场景选择不同策略:金融系统重一致(CP),社交应用重可用(AP),内网系统可选CA。现代架构更趋向动态调整与混合策略,灵活应对复杂需求。
|
2月前
|
数据采集 消息中间件 监控
单机与分布式:社交媒体热点采集的实践经验
在舆情监控与数据分析中,单机脚本适合小规模采集如微博热榜,而小红书等大规模、高时效性需求则需分布式架构。通过Redis队列、代理IP与多节点协作,可提升采集效率与稳定性,适应数据规模与变化速度。架构选择应根据实际需求,兼顾扩展性与维护成本。
|
5月前
|
人工智能 安全 应用服务中间件
阿里巴巴 MCP 分布式落地实践:快速转换 HSF 到 MCP server
本文分享了阿里巴巴内部将大规模HSF服务快速转换为MCP Server的实践经验,通过Higress网关实现MCP协议卸载,无需修改代码即可接入MCP生态。文章分析了MCP生态面临的挑战,如协议快速迭代和SDK不稳定性,并详细介绍了操作步骤及组件功能。强调MCP虽非终极解决方案,但作为AI业务工程化的起点具有重要意义。最后总结指出,MCP只是AI原生应用发展的第一步,未来还有更多可能性值得探索。
1085 48
|
3月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
1月前
|
消息中间件 缓存 监控
中间件架构设计与实践:构建高性能分布式系统的核心基石
摘要 本文系统探讨了中间件技术及其在分布式系统中的核心价值。作者首先定义了中间件作为连接系统组件的"神经网络",强调其在数据传输、系统稳定性和扩展性中的关键作用。随后详细分类了中间件体系,包括通信中间件(如RabbitMQ/Kafka)、数据中间件(如Redis/MyCAT)等类型。文章重点剖析了消息中间件的实现机制,通过Spring Boot代码示例展示了消息生产者的完整实现,涵盖消息ID生成、持久化、批量发送及重试机制等关键技术点。最后,作者指出中间件架构设计对系统性能的决定性影响,
|
1月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
248 2
|
5月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
1742 57
|
5月前
|
安全 JavaScript 前端开发
HarmonyOS NEXT~HarmonyOS 语言仓颉:下一代分布式开发语言的技术解析与应用实践
HarmonyOS语言仓颉是华为专为HarmonyOS生态系统设计的新型编程语言,旨在解决分布式环境下的开发挑战。它以“编码创造”为理念,具备分布式原生、高性能与高效率、安全可靠三大核心特性。仓颉语言通过内置分布式能力简化跨设备开发,提供统一的编程模型和开发体验。文章从语言基础、关键特性、开发实践及未来展望四个方面剖析其技术优势,助力开发者掌握这一新兴工具,构建全场景分布式应用。
571 35

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多