第7章 使用Keras开发神经网络
Keras基于Python,开发深度学习模型很容易。Keras将Theano和TensorFlow的数值计算封装好,几句话就可以配置并训练神经网络。本章开始使用Keras开发神经网络。本章将:
- 将CSV数据读入Keras
- 用Keras配置并编译多层感知器模型
- 用验证数据集验证Keras模型
我们开始吧。
7.1 简介
虽然代码量不大,但是我们还是慢慢来。大体分几步:
- 导入数据
- 定义模型
- 编译模型
- 训练模型
- 测试模型
- 写出程序
7.2 皮马人糖尿病数据集
我们使用皮马人糖尿病数据集(Pima Indians onset of diabetes),在UCI的机器学习网站可以免费下载。数据集的内容是皮马人的医疗记录,以及过去5年内是否有糖尿病。所有的数据都是数字,问题是(是否有糖尿病是1或0),是二分类问题。数据的数量级不同,有8个属性:
- 怀孕次数
- 2小时口服葡萄糖耐量试验中的血浆葡萄糖浓度
- 舒张压(毫米汞柱)
- 2小时血清胰岛素(mu U/ml)
- 体重指数(BMI)
- 糖尿病血系功能
- 年龄(年)
- 类别:过去5年内是否有糖尿病
所有的数据都是数字,可以直接导入Keras。本书后面也会用到这个数据集。数据有768行,前5行的样本长这样:
6,148,72,35,0,33.6,0.627,50,1
1,85,66,29,0,26.6,0.351,31,0
8,183,64,0,0,23.3,0.672,32,1
1,89,66,23,94,28.1,0.167,21,0
0,137,40,35,168,43.1,2.288,33,1
数据在本书代码的data
目录,也可以在UCI机器学习的网站下载。把数据和Python文件放在一起,改名:
pima-indians-diabetes.csv
基准准确率是65.1%,在10次交叉验证中最高的正确率是77.7%。在UCI机器学习的网站可以得到数据集的更多资料。
7.3 导入资料
使用随机梯度下降时最好固定随机数种子,这样你的代码每次运行的结果都一致。这种做法在演示结果、比较算法或debug时特别有效。你可以随便选种子:
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
现在导入皮马人数据集。NumPy的loadtxt()
函数可以直接带入数据,输入变量是8个,输出1个。导入数据后,我们把数据分成输入和输出两组以便交叉检验:
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
这样我们的数据每次结果都一致,可以定义模型了。
7.4 定义模型
Keras的模型由层构成:我们建立一个Sequential
模型,一层层加入神经元。第一步是确定输入层的数目正确:在创建模型时用input_dim
参数确定。例如,有8个输入变量,就设成8。
隐层怎么设置?这个问题很难回答,需要慢慢试验。一般来说,如果网络够大,即使存在问题也不会有影响。这个例子里我们用3层全连接网络。
全连接层用Dense
类定义:第一个参数是本层神经元个数,然后是初始化方式和激活函数。这里的初始化方法是0到0.05的连续型均匀分布(uniform
),Keras的默认方法也是这个。也可以用高斯分布进行初始化(normal
)。
前两层的激活函数是线性整流函数(relu
),最后一层的激活函数是S型函数(sigmoid
)。之前大家喜欢用S型和正切函数,但现在线性整流函数效果更好。为了保证输出是0到1的概率数字,最后一层的激活函数是S型函数,这样映射到0.5的阈值函数也容易。前两个隐层分别有12和8个神经元,最后一层是1个神经元(是否有糖尿病)。
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, init='uniform', activation='relu')) model.add(Dense(8, init='uniform', activation='relu')) model.add(Dense(1, init='uniform', activation='sigmoid'))
7.5 编译模型
定义好的模型可以编译:Keras会调用Theano或者TensorFlow编译模型。后端会自动选择表示网络的最佳方法,配合你的硬件。这步需要定义几个新的参数。训练神经网络的意义是:找到最好的一组权重,解决问题。
我们需要定义损失函数和优化算法,以及需要收集的数据。我们使用binary_crossentropy
,错误的对数作为损失函数;adam
作为优化算法,因为这东西好用。想深入了解请查阅:Adam: A Method for Stochastic Optimization论文。因为这个问题是分类问题,我们收集每轮的准确率。
7.6 训练模型
终于开始训练了!调用模型的fit()
方法即可开始训练。
网络按轮训练,通过nb_epoch
参数控制。每次送入的数据(批尺寸)可以用batch_size
参数控制。这里我们只跑150轮,每次10个数据。多试试就知道了。
# Fit the model
model.fit(X, Y, nb_epoch=150, batch_size=10)
现在CPU或GPU开始煎鸡蛋了。