美团在Redis上踩过的一些坑-3.redis内存占用飙升

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
日志服务 SLS,月写入数据量 50GB 1个月
简介:       一、现象:    redis-cluster某个分片内存飙升,明显比其他分片高很多,而且持续增长。
   

   转载请注明出处哈:


    


 一、现象:
    redis-cluster某个分片内存飙升,明显比其他分片高很多,而且持续增长。并且主从的内存使用量并不一致。
 
二、分析可能原因:
 1.  redis-cluster的bug (这个应该不存在)
 2. 客户端的hash(key)有问题,造成分配不均。(redis使用的是crc16, 不会出现这么不均的情况)
 3. 存在个别大的key-value: 例如一个包含了几百万数据set数据结构(这个有可能)
 4. 主从复制出现了问题。
 5. 其他原因
 
三、调查原因:
 1. 经查询,上述1-4都不存在
 2. 观察info信息,有一点引起了怀疑: client_longes_output_list有些异常。
3. 于是理解想到服务端和客户端交互时,分别为每个客户端设置了输入缓冲区和输出缓冲区,这部分如果很大的话也会占用Redis服务器的内存。
 
从上面的client_longest_output_list看,应该是输出缓冲区占用内存较大,也就是有大量的数据从Redis服务器向某些客户端输出。
于是使用client list命令(类似于mysql processlist) redis-cli -h host -p port client list | grep -v "omem=0",来查询输出缓冲区不为0的客户端连接,于是查询到祸首monitor,于是豁然开朗.
 
monitor的模型是这样的,它会将所有在Redis服务器执行的命令进行输出,通常来讲Redis服务器的QPS是很高的,也就是如果执行了monitor命令,Redis服务器在Monitor这个客户端的输出缓冲区又会有大量“存货”,也就占用了大量Redis内存。
 
 
四、紧急处理和解决方法
进行主从切换(主从内存使用量不一致),也就是redis-cluster的fail-over操作,继续观察新的Master是否有异常,通过观察未出现异常。
查找到真正的原因后,也就是monitor,关闭掉monitor命令的进程后,内存很快就降下来了。
 
五、 预防办法:
1. 为什么会有monitor这个命令发生,我想原因有两个:
(1). 工程师想看看究竟有哪些命令在执行,就用了monitor
(2). 工程师对于redis学习的目的,因为进行了redis的托管,工程师只要会用redis就可以了,但是作为技术人员都有学习的好奇心和欲望。
2. 预防方法:
(1) 对工程师培训,讲一讲redis使用过程中的坑和禁忌
(2) 对redis云进行介绍,甚至可以让有兴趣的同学参与进来
(3) 针对client做限制,但是官方也不建议这么做,官方的默认配置中对于输出缓冲区没有限制。
client-output-buffer-limit normal 0 0 0
(4) 密码:redis的密码功能较弱,同时多了一次IO
(5) 修改客户端源代码,禁止掉一些危险的命令(shutdown, flushall, monitor, keys *),当然还是可以通过redis-cli来完成
(6) 添加command-rename配置,将一些危险的命令(flushall, monitor, keys * , flushdb)做rename,如果有需要的话,找到redis的运维人员处理
rename-command FLUSHALL "随机数"
rename-command FLUSHDB "随机数"
rename-command KEYS "随机数"
 
六、模拟实验:
1.  开启一个空的Redis(最简,直接redis-server)
redis-server
    初始化内存使用量如下:
# Memory
used_memory:815072
used_memory_human:795.97K
used_memory_rss:7946240
used_memory_peak:815912
used_memory_peak_human:796.79K
used_memory_lua:36864
mem_fragmentation_ratio:9.75
mem_allocator:jemalloc-3.6.0
    client缓冲区:
# Clients
connected_clients:1
client_longest_output_list:0
client_biggest_input_buf:0
blocked_clients:0
 
2. 开启一个monitor:
redis-cli -h 127.0.0.1 -p 6379 monitor
3. 使用redis-benchmark:
redis-benchmark -h 127.0.0.1 -p 6379 -c 500 -n 200000
4. 观察
(1) info memory:内存一直增加,直到benchmark结束,monitor输出完毕,但是used_memory_peak_human(历史峰值)依然很高--观察附件中日志
(2)info clients: client_longest_output_list: 一直在增加,直到benchmark结束,monitor输出完毕,才变为0 --观察附件中日志
(3)redis-cli -h host -p port client list | grep "monitor" omem一直很高,直到benchmark结束,monitor输出完毕,才变为0 --观察附件中日志
监控脚本:
while [ 1 == 1 ]
do
now=$(date "+%Y-%m-%d_%H:%M:%S")
echo "=========================${now}==============================="
echo " #Client-Monitor"
redis-cli -h 127.0.0.1 -p 6379 client list | grep monitor
redis-cli -h 127.0.0.1 -p 6379 info clients
redis-cli -h 127.0.0.1 -p 6379 info memory
#休息100毫秒
usleep 100000
done
 完整的日志文件:
 部分日志:
=========================2015-11-06_10:07:16===============================
 #Client-Monitor
id=7 addr=127.0.0.1:56358 fd=6 name= age=91 idle=0 flags=O db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=0 obl=0 oll=4869 omem=133081288 events=rw cmd=monitor
# Clients
connected_clients:502
client_longest_output_list:4869
client_biggest_input_buf:0
blocked_clients:0
# Memory
used_memory:174411224
used_memory_human:166.33M
used_memory_rss:161513472
used_memory_peak:176974792
used_memory_peak_human:168.78M
used_memory_lua:36864
mem_fragmentation_ratio:0.93
mem_allocator:jemalloc-3.6.0
  
 
 
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 缓存 NoSQL
Redis Quicklist 竟让内存占用狂降50%?
【10月更文挑战第11天】
48 2
|
2月前
|
NoSQL Java API
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试一线互联网企业时遇到了关于Redis分布式锁过期及自动续期的问题。尼恩对此进行了系统化的梳理,介绍了两种核心解决方案:一是通过增加版本号实现乐观锁,二是利用watch dog自动续期机制。后者通过后台线程定期检查锁的状态并在必要时延长锁的过期时间,确保锁不会因超时而意外释放。尼恩还分享了详细的代码实现和原理分析,帮助读者深入理解并掌握这些技术点,以便在面试中自信应对相关问题。更多技术细节和面试准备资料可在尼恩的技术文章和《尼恩Java面试宝典》中获取。
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
|
3月前
|
缓存 监控 NoSQL
阿里面试让聊一聊Redis 的内存淘汰(驱逐)策略
大家好,我是 V 哥。粉丝小 A 面试阿里时被问到 Redis 的内存淘汰策略问题,特此整理了一份详细笔记供参考。Redis 的内存淘汰策略决定了在内存达到上限时如何移除数据。希望这份笔记对你有所帮助!欢迎关注“威哥爱编程”,一起学习与成长。
|
3月前
|
存储 Prometheus NoSQL
Redis 内存突增时,如何定量分析其内存使用情况
【9月更文挑战第21天】当Redis内存突增时,可采用多种方法分析内存使用情况:1)使用`INFO memory`命令查看详细内存信息;2)借助`redis-cli --bigkeys`和RMA工具定位大键;3)利用Prometheus和Grafana监控内存变化;4)优化数据类型和存储结构;5)检查并调整内存碎片率。通过这些方法,可有效定位并解决内存问题,保障Redis稳定运行。
121 3
|
4月前
|
存储 NoSQL 算法
Redis内存回收
Redis 基于内存存储,性能卓越,但单节点内存不宜过大,以免影响持久化或主从同步。可通过配置 `maxmemory` 限制最大内存。内存达到上限时,Redis采用两种策略:内存过期策略和内存淘汰策略。过期策略包括惰性删除和周期删除,后者分为 SLOW 和 FAST 模式。内存淘汰策略有八种,如 LRU、LFU 和随机淘汰等,用于在内存不足时释放空间。官方推荐使用 LFU 算法。
Redis内存回收
|
3月前
|
缓存 NoSQL 算法
14)Redis 在内存用完时会怎么办?如何处理已过期的数据?
14)Redis 在内存用完时会怎么办?如何处理已过期的数据?
59 0
|
3月前
|
存储 缓存 NoSQL
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
77 0
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6
|
19天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题