图解排序算法之快速排序-双端探测法

简介: 此文为转载文章,原文地址为:http://www.cnblogs.com/ahalei/p/3568434.html
  这是我见过的解释快速排序最好的文章,分享如下:
        假如我们的计算机每秒钟可以运行10亿次,那么对1亿个数进行排序,桶排序则只需要0.1秒,而冒泡排序则需要1千万秒,达到115天之久,是不是很吓人。那有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光听这个名字是不是就觉得很高端呢。
 
        假设我们现在对“6  1  2 7  9  3  4  5 10  8”这个10个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便,就让第一个数6作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在6的右边,比基准数小的数放在6的左边,类似下面这种排列。
       3  1  2 5  4  6  9 7  10  8
 
        在初始状态下,数字6在序列的第1位。我们的目标是将6挪到序列中间的某个位置,假设这个位置是k。现在就需要寻找这个k,并且以第k位为分界点,左边的数都小于等于6,右边的数都大于等于6。想一想,你有办法可以做到这点吗?
 
        给你一个提示吧。请回忆一下冒泡排序,是如何通过“交换”,一步步让每个数归位的。此时你也可以通过“交换”的方法来达到目的。具体是如何一步步交换呢?怎样交换才既方便又节省时间呢?先别急着往下看,拿出笔来,在纸上画画看。我高中时第一次学习冒泡排序算法的时候,就觉得冒泡排序很浪费时间,每次都只能对相邻的两个数进行比较,这显然太不合理了。于是我就想了一个办法,后来才知道原来这就是“快速排序”,请允许我小小的自恋一下(^o^)。
 

        方法其实很简单:分别从初始序列“6  1  2 7  9  3  4  5 10  8”两端开始“探测”。先从找一个小于6的数,再从找一个大于6的数,然后交换他们。这里可以用两个变量ij,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即j=10),指向数字8

 
       首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j--),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。


 
 
 

       现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下。

        6  1  2  5  9 3  4  7  10  8
 
 
 
        到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下。
        6  1  2 5  4  3  9  7 10  8
 
        第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下。
        3  1 2  5  4  6  9 7  10  8
 
 
        到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。
 
        OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3  1 2  5  4”,右边的序列是“9  7  10  8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。现在先来处理6左边的序列现吧。
 
        左边的序列是“3  1  2 5  4”。请将这个序列以3为基准数进行调整,使得3左边的数都小于等于3,3右边的数都大于等于3。好了开始动笔吧。
 
        如果你模拟的没有错,调整完毕之后的序列的顺序应该是。
        2  1  3  5  4
 
        OK,现在3已经归位。接下来需要处理3左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以2为基准数进行调整,处理完毕之后的序列为“1 2”,到此2已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下。
        1  2  3 4  5  6 9  7  10  8
 
        对于序列“9  7  10  8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下。
        1  2  3 4  5  6  7  8 9  10
 
        到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。
 
 
        快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是O(N2),它的平均时间复杂度为O(NlogN)。
相关文章
|
1月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
59 4
|
28天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
121 61
|
2月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
39 1
|
2月前
|
搜索推荐 Java Go
深入了解快速排序算法
深入了解快速排序算法
56 2
|
2月前
|
存储 搜索推荐 算法
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
【排序算法(二)】——冒泡排序、快速排序和归并排序—>深层解析
|
2月前
|
算法 Python
Python算法编程:冒泡排序、选择排序、快速排序
Python算法编程:冒泡排序、选择排序、快速排序
36 0
|
2月前
|
搜索推荐 C语言 C++
【C语言】指针篇-精通库中的快速排序算法:巧妙掌握技巧(4/5)
【C语言】指针篇-精通库中的快速排序算法:巧妙掌握技巧(4/5)
|
4月前
|
搜索推荐 算法 Java
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
56 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
|
4月前
|
算法 搜索推荐
算法设计 (分治法应用实验报告)基于分治法的合并排序、快速排序、最近对问题
这篇文章是关于分治法应用的实验报告,详细介绍了如何利用分治法实现合并排序和快速排序算法,并探讨了使用分治法解决二维平面上的最近对问题的方法,包括伪代码、源代码实现及时间效率分析,并附有运行结果和小结。
|
5月前
|
算法 搜索推荐 编译器
算法高手养成记:Python快速排序的深度优化与实战案例分析
【7月更文挑战第11天】快速排序是编程基础,以O(n log n)时间复杂度和原址排序著称。其核心是“分而治之”,通过选择基准元素分割数组并递归排序两部分。优化包括:选择中位数作基准、尾递归优化、小数组用简单排序。以下是一个考虑优化的Python实现片段,展示了随机基准选择。通过实践和优化,能提升算法技能。**
66 3

热门文章

最新文章