一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析 1. 问题出现 2. 问题原因 3. 问题解决 4. 问题结论 相同查询在数据量相近的情况下在不同 RDS for MySQL 实例上有不同的性能表现,容易引发用户对 RDS for MySQL 实例的性能差异性的疑虑,本文分享下近期碰到的一个原因比较隐蔽但很常见的案例。

一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析

1. 问题出现

2. 问题原因

3. 问题解决

4. 问题结论



相同查询在数据量相近的情况下在不同 RDS for MySQL 实例上有不同的性能表现,容易引发用户对 RDS for MySQL 实例的性能差异性的疑虑,本文分享下近期碰到的一个原因比较隐蔽但很常见的案例。

1. 问题出现

一个用户的下述查询在 RDS for MySQL 实例 A 上执行需要  30+ 毫秒 ,而在 RDS for MySQL 实例 B 执行需要  12+ 秒  

SELECT A.PayId, A.sourceType, 
A.txnTime, A.txnEndTime, A.invid, A.payStatus, 
A.invstatus makeinvoicestatus, A.createTime, B.invstatus invstatus, F.returncode returncode
FROM Pay A
LEFT JOIN 
(
  SELECT  M.invstatus invstatus,  M.PayId PayId,   M.invid invid
  FROM  inv_msg M
  WHERE M.sourcetype != '03'
) B ON A.PayId = B.PayId
LEFT JOIN 
(
  SELECT C.invid invoiceids,  C.returncode, C.creatime
  FROM inv_detail C,
    (
      SELECT D.invid invoiceids, max(D.creatime) creatime
      FROM inv_detail D
      GROUP BY  D.invid
    ) E
  WHERE C.invid = E.invoiceids
  AND C.creatime = E.creatime
) F ON B.invid = F.invoiceids
WHERE A.deleteStatus = 0
AND A.payStatus IN ( '904', '905', '906', '907','908','909' )
AND A.sourceType IN ('01', '02')
ORDER BY txnTime DESC
LIMIT 0,10;​


2. 问题原因

排查 SQL 在 RDS for MySQL 实例 A 和 B 上的执行计划,发现不一致。
执行时间长 - A

id	select_type	table		type	possible_keys			key			key_len		ref				rows	Extra
1	PRIMARY	    A	    	ALL		payStatus,sourceType	NULL		NULL		NULL			26427	Using where; Using temporary; Using filesort
1	PRIMARY	    <derived2>	ALL		NULL					NULL		NULL		NULL			8737	Using where; Using join buffer (Block Nested Loop)
1	PRIMARY	    <derived3>	ref		<auto_key0>				<auto_key0>	8			B.invid			10		NULL
3	DERIVED	    <derived4>	ALL		NULL					NULL		NULL		NULL			10694	NULL
3	DERIVED	    C			ref		invid					invid		8			F.invoiceids	1		Using where
4	DERIVED	    D			index	invid					invid		8			NULL			10694	NULL
2	DERIVED	    M			ALL		NULL					NULL		NULL		NULL			8737	Using where


执行时间短 - B

id	select_type	table		type	possible_keys			key			key_len		ref							rows	Extra
1	PRIMARY		A			index	payStatus,sourceType	txnTime		6			NULL						1		Using where
1	PRIMARY		<derived2>	ref		<auto_key1>				<auto_key1>	8			pc_vqgc_0000.A.unionPayId	15		NULL
1	PRIMARY		<derived3>	ref		<auto_key0>				<auto_key0>	8			B.invid						10		NULL
3	DERIVED		<derived4>	ALL		NULL					NULL		NULL		NULL						10506	NULL
3	DERIVED		C			ref		invid					invid		8			F.invoiceids				1		Using where
4	DERIVED		D			index	invid					invid		8			NULL						10506	NULL
2	DERIVED		M			ALL		sourcetype				NULL		NULL		NULL						8928	Using where


 
从执行计划对比看问题出现在 表 A 和 中间表 B 关联这步
执行计划 A 的 Extra 信息显示  Using join buffer (Block Nested Loop),说明如果选择单纯的 Nested Loop Join 成本会很高(在内层循环无法使用索引的场景下,成本是 O(Rn x Sn))。
优化器为了提高效率,因此选择了 Block Nested Loop。
对比执行计划 B,内层使用的索引是 MySQL 自动创建的(auto_key1),检查优化器开关配置是否有区别,以防万一。
 
// 检查优化器开关配置
show global variables like 'optimizer_switch' \G

*************************** 1. row ***************************
Variable_name: optimizer_switch
        Value: index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,block_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstmatch=on,subquery_materialization_cost_based=on,use_index_extensions=on

// 输出格式化后
index_merge=on
index_merge_union=on
index_merge_sort_union=on
index_merge_intersection=on
engine_condition_pushdown=on
index_condition_pushdown=on
mrr=on
mrr_cost_based=on
block_nested_loop=on
batched_key_access=off
materialization=on
semijoin=on
loosescan=on
firstmatch=on
subquery_materialization_cost_based=on
use_index_extensions=on
 
对比两个实例优化器开关配置相同,且 materialization 和 subquery_materialization_cost_based 都已经打开, 加之执行计划 A 中有物化表的使用,因此排除掉优化器开关配置问题。
 
此时问题就比较明朗了, 应该是关联的两个字段类型不匹配,导致无法通过索引物化临时表的关联字段来使用 Nested Loop Join
 
带着上面的怀疑检查下两个实例的表 Pay 和 inv_msg 的关联字段 PayId 的字段类型。
// ========= 执行快 ========= 
// 表 pay
CREATE TABLE `pay` (
  `PayId` bigint(20) NOT NULL AUTO_INCREMENT,
  `companyId` bigint(20) DEFAULT NULL,
  .......
  `txnEndTime` datetime DEFAULT NULL,
  `deleteStatus` varchar(255) DEFAULT '0',
  PRIMARY KEY (`unionPayId`),
  KEY `companyId` (`companyId`) USING BTREE,
  KEY `invid` (`invId`) USING BTREE,
  KEY `payStatus` (`payStatus`) USING BTREE,
  KEY `sourceType` (`sourceType`) USING BTREE,
  KEY `txnTime` (`txnTime`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=24906 DEFAULT CHARSET=utf8

// 表 inv_msg
CREATE TABLE `inv_msg ` (
`invid` bigint(20) NOT NULL AUTO_INCREMENT, `payid` bigint(20) NOT NULL, ...... `invoicestatus` varchar(2) NOT NULL DEFAULT '0', `sourcetype` varchar(200) NOT NULL', PRIMARY KEY (`invoiceid`), KEY `unionpayid` (`unionpayid`) USING BTREE, KEY `invoicestatus` (`invoicestatus`) USING BTREE, KEY `sourcetype` (`sourcetype`,`unionpayid`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=8897 DEFAULT CHARSET=utf8
// ========= 执行慢 ========= 
// 表 pay
CREATE TABLE `pay` (
  `PayId` bigint(20) NOT NULL AUTO_INCREMENT,
  `companyId` bigint(20) DEFAULT NULL,
  .......
  `txnEndTime` datetime DEFAULT NULL,
  `deleteStatus` varchar(255) DEFAULT '0',
  PRIMARY KEY (`unionPayId`),
  KEY `companyId` (`companyId`) USING BTREE,
  KEY `invid` (`invId`) USING BTREE,
  KEY `payStatus` (`payStatus`) USING BTREE,
  KEY `sourceType` (`sourceType`) USING BTREE,
  KEY `txnTime` (`txnTime`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=24906 DEFAULT CHARSET=utf8

// 表 inv_msg
CREATE TABLE `inv_msg ` (
`invid` bigint(20) NOT NULL AUTO_INCREMENT, `payid` varchar(20) NOT NULL, ...... `invoicestatus` varchar(2) NOT NULL DEFAULT '0', `sourcetype` varchar(200) NOT NULL', PRIMARY KEY (`invoiceid`), KEY `unionpayid` (`unionpayid`) USING BTREE, KEY `invoicestatus` (`invoicestatus`) USING BTREE, KEY `sourcetype` (`sourcetype`,`unionpayid`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=8897 DEFAULT CHARSET=utf8
 
可以看到 payId 字段在执行快场景下 2 个表都是 big int 类型;而在执行慢的场景下,2个表的字段类型分别为 big int 和 varchar,导致执行计划选择了对无法使用索引场景优化的 Block Netsted Loop。

3. 问题解决

理清问题的根源,就有了针对性的方法。
建议用户修改 表 inv_msg 的字段 payid 类型为 big int not null,重新收集统计信息后问题解决。
// 业务低峰期执行
alter table inv_msg algorithm=copy, lock=shared, modify payid bigint not null;  

// 重新收集统计信息
analyze table inv_msg;


4. 问题结论

  • 需要严格遵守规范进行开发工作。

  • 用户 DBA 应该进行 SQL 审核工作。
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
2月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
105 3
|
2月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
2月前
|
SQL 监控 关系型数据库
一键开启百倍加速!RDS DuckDB 黑科技让SQL查询速度最高提升200倍
RDS MySQL DuckDB分析实例结合事务处理与实时分析能力,显著提升SQL查询性能,最高可达200倍,兼容MySQL语法,无需额外学习成本。
|
2月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
185 6
|
2月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
124 1
|
2月前
|
存储 弹性计算 关系型数据库
如何通过控制台创建RDS MySQL实例
本文介绍了通过控制台创建RDS MySQL实例的详细步骤,包括准备工作、选择计费方式、地域、实例规格、存储空间等关键配置,并指导用户完成下单与实例查看。
|
MySQL 关系型数据库 RDS
RDS for MySQL CPU 性能问题分析
RDS for MySQL CPU 性能问题分析 RDS for MySQL CPU 使用率高是使用 RDS for MySQL 实例过程中比较常见的一类性能问题。 由于实例 CPU 资源打满会直接导致业务受损,且问题发生过程迅速、临界时间短 统计采集困难、问题发生后统计指标呈反向曲线,加之日常运维过程中问题征兆容易被忽视,非常容易导致用户体感问题突然性强烈,因此在这里我们对 RDS for MySQL 的 CPU 使用率高的原因做一个比较详细的分析说明。
2550 57
|
MySQL 关系型数据库 数据库

热门文章

最新文章

推荐镜像

更多