深度学习实践:使用Tensorflow实现快速风格迁移-阿里云开发者社区

开发者社区> 武耀文> 正文

深度学习实践:使用Tensorflow实现快速风格迁移

简介: 一、风格迁移简介 风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“迁移”到另一张图片上: 然而,原始的风格迁移(论文地址:[https://arxiv.org/pdf/1508.06576v2.pdf )的速度是非常慢的。
+关注继续查看

一、风格迁移简介
风格迁移(Style Transfer)是深度学习众多应用中非常有趣的一种,如图,我们可以使用这种方法把一张图片的风格“迁移”到另一张图片上:

然而,原始的风格迁移(论文地址:[https://arxiv.org/pdf/1508.06576v2.pdf )的速度是非常慢的。在GPU上,生成一张图片都需要10分钟左右,而如果只使用CPU而不使用GPU运行程序,甚至需要几个小时。这个时间还会随着图片尺寸的增大而迅速增大。
这其中的原因在于,在原始的风格迁移过程中,把生成图片的过程当做一个“训练”的过程。每生成一张图片,都相当于要训练一次模型,这中间可能会迭代几百几千次。如果你了解过一点机器学习的知识,就会知道,从头训练一个模型要比执行一个已经训练好的模型要费时太多。而这也正是原始的风格迁移速度缓慢的原因。
二、快速风格迁移简介
那有没有一种方法,可以不把生成图片当做一个“训练”的过程,而当成一个“执行”的过程呢?答案是肯定的。这就这篇快速风格迁移(fast neural style transfer):Perceptual Losses for Real-Time Style Transfer and Super-Resolution
快速风格迁移的网络结构包含两个部分。一个是“生成网络”(原文中为Transformation Network),一个是“损失网络”(Loss Network)。生成网络接收一个图片当做输入,然后输出也是一张图片(即风格迁移后的结果)。如下图,左侧是生成网络,右侧为损失网络:
训练阶段:首先选定一张风格图片。训练的目标是让生成网络可以有效生成图片。目标由损失网络定义。
执行阶段:给定一张图片,将其输入生成网络,输出这张图片风格迁移后的结果。
我们可以发现,在模型的“执行”阶段我们就可以完成风格图片的生成。因此生成一张图片的速度非常块,在GPU上一般小于1秒,在CPU上运行也只需要几秒的时间。
三、快速风格迁移的Tensorflow实现
话不多说,直接上我的代码的Github地址:hzy46/fast-neural-style-tensorflow
还有变换效果如下。
原始图片:
风格迁移后的图片:
以上图片在GPU(Titan Black)下生成约需要0.8s,CPU(i7-6850K)下生成用时约2.9s。
关于快速风格迁移,其实之前在Github上已经有了Tensorflow的两个实现:
junrushao1994/fast-neural-style.tf
OlavHN/fast-neural-style

但是第一个项目只提供了几个训练好的模型,没有提供训练的代码,也没有提供具体的网络结构。所以实际用处不大。
而第二个模型做了完整的实现,可以进行模型的训练,但是训练出来的效果不是很好,在作者自己的博客 中,给出了一个范例,可以看到生成的图片有很多噪声点:

我的项目就是在OlavHN/fast-neural-style 的基础上做了很多修改和调整。
四、一些实现细节
1、与Tensorflow Slim结合在原来的实现中,作者使用了VGG19模型当做损失网络。而在原始的论文中,使用的是VGG16。为了保持一致性,我使用了Tensorflow Slim(地址:tensorflow/models)对损失网络重新进行了包装。
Slim是Tensorflow的一个扩展库,提供了很多与图像分类有关的函数,已经很多已经训练好的模型(如VGG、Inception系列以及ResNet系列)。
下图是Slim支持的模型:
使用Slim替换掉原先的网络之后,在损失函数中,我们不仅可以使用VGG16,也可以方便地使用VGG19、ResNet等其他网络结构。具体的实现请参考源码。
2、改进转置卷积的两个Trick
原先我们需要使用网络生成图像的时候,一般都是采用转置卷积直接对图像进行上采样。
这篇文章指出了转置卷积的一些问题,认为转置卷积由于不合理的重合,使得生成的图片总是有“棋盘状的噪声点”,它提出使用先将图片放大,再做卷积的方式来代替转置卷积做上采样,可以提高生成图片的质量,下图为两种方法的对比:
对应的Tensorflow的实现:
def resize_conv2d(x, input_filters, output_filters, kernel, strides, training): with tf.variable_scope('conv_transpose') as scope: height = x.get_shape()[1].value if training else tf.shape(x)[1] width = x.get_shape()[2].value if training else tf.shape(x)[2] new_height = height * strides * 2 new_width = width * strides * 2 x_resized = tf.image.resize_images(x, [new_height, new_width], tf.image.ResizeMethod.NEAREST_NEIGHBOR) shape = [kernel, kernel, input_filters, output_filters] weight = tf.Variable(tf.truncated_normal(shape, stddev=0.1), name='weight') return conv2d(x_resized, input_filters, output_filters, kernel, strides)

以上为第一个Trick。
第二个Trick是文章 Instance Normalization: The Missing Ingredient for Fast Stylization 中提到的,用 Instance Normalization来代替通常的Batch Normalization,可以改善风格迁移的质量。
3、注意使用Optimizer和Saver
这是关于Tensorflow实现的一个小细节。
在Tensorflow中,Optimizer和Saver是默认去训练、保存模型中的所有变量的。但在这个项目中,整个网络分为生成网络和损失网络两部分。我们的目标是训练好生成网络,因此只需要去训练、保存生成网络中的变量。在构造Optimizer和Saver的时候,要注意只传入生成网络中的变量。
找出需要训练的变量,传递给Optimizer:
variable_to_train = []for variable in tf.trainable_variables(): if not(variable.name.startswith(FLAGS.loss_model)): variable_to_train.append(variable)train_op = tf.train.AdamOptimizer(1e-3).minimize(loss, global_step=global_step, var_list=variable_to_train)

五、总结
总之是做了一个还算挺有趣的项目。代码不是特别多,如果只是用训练好的模型生成图片的话,使用CPU也可以在几秒内运行出结果,不需要去搭建GPU环境。建议有兴趣的同学可以自己玩一下。(再贴下地址吧:hzy46/fast-neural-style-tensorflow
关于训练,其实也有一段比较坎(dan)坷(teng)的调参经历,下次有时间再分享一下,今天就先写到这儿。谢谢大家!

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
DL之VGG16:基于VGG16(Keras)利用Knifey-Spoony数据集对网络架构进行迁移学习(一)
DL之VGG16:基于VGG16(Keras)利用Knifey-Spoony数据集对网络架构进行迁移学习
11 0
DL之Keras: Keras深度学习框架的注意事项(默认下载存放路径等)、使用方法之详细攻略
DL之Keras: Keras深度学习框架的注意事项(默认下载存放路径等)、使用方法之详细攻略
8 0
使用Keras进行深度学习:(三)使用text-CNN处理自然语言(上)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 上一篇文章中一直围绕着CNN处理图像数据进行讲解,而CNN除了处理图像数据之外,还适用于文本分类。
1460 0
NLP中的迁移学习
迁移学习正在各个领域大展拳脚,NLP领域正在受到冲击!
2016 0
使用Keras进行深度学习:(三)使用text-CNN处理自然语言(下)
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 在上一篇文章中,已经介绍了Keras对文本数据进行预处理的一般步骤。
1769 0
看深度学习框架排名第一的TensorFlow如何进行时序预测!
2017年深度学习框架关注度排名tensorflow以绝对的优势占领榜首,本文通过一个小例子介绍了TensorFlow在时序预测上的应用。
1512 0
阿里深度学习框架开源了!无缝对接TensorFlow、PyTorch
阿里巴巴将于12月开源其内部深度学习框架 X-DeepLearning,面向广告、推荐、搜索等高维稀疏数据场景,以填补TensorFlow、PyTorch等现有开源深度学习框架主要面向图像、语音等低维稠密数据的不足。
2610 0
送你一份"不正经"的深度学习简述(附论文)
作为人工智能领域里最热门的概念,深度学习会在未来对我们的生活产生显著的影响,或许现在已经是了,从 AlphaGo 到 iPhone X 上的人脸识别(FaceID),背后都有它的身影。关于深度学习,我们能够看到很多优秀的介绍、课程和博客,本文将列举其中的精华部分,而且,你会发现这是一篇"不一样"的文章。
14619 0
+关注
武耀文
知行合一
77
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载