mysql索引之聚集索引

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 聚集索引不是一种单独的索引类型,而是一种存储数据方式。其具体细节依赖于实现方式,但是InnoDB的聚集索引实际上在同样的结构中保存了B-Tree索引和数据行。

聚集索引不是一种单独的索引类型,而是一种存储数据方式。其具体细节依赖于实现方式,但是InnoDB的聚集索引实际上在同样的结构中保存了B-Tree索引和数据行。


当表有聚集索引的时候,它的数据行实际保存在索引的叶子页中。术语“聚集”指实际的数据行和相关的键值都保存在一起。每个表只能有一个聚集索引,因为不能一次把行保存在两个地方。(但是,覆盖索引可以模拟多个聚集索引)


当前,SolidDB和InnoDB是唯一支持聚集索引的存储引擎。InnoDB按照主键进行聚集,如果没有定义主键,InnoDB会试着使用唯一的非空索引来代替。如果没有这种索引,InnoDB就会定义隐藏的主键然后在上面进行聚集。


聚集主键有助于性能,但是它也能导致严重的性能问题。


优点:

1.可以把相关数据保存在一起。

2.数据访问快。聚集索引把索引和数据都保存到同一棵B-Tree中,因此从聚集索引中取得数据通常在非聚集索引进行查找要快。

3.使用覆盖索引的查询可以使用包含在叶子节点中的主键值

如果表和查询可以使用它们,这些优点能极大地提高性能。


缺点:

1.聚集能最大限度地提升I/O密集负载的性能。如果数据能装入内存,那么其顺序也就无怕谓了,这样聚集就没什么用处。

2.插入速度严重依赖于插入顺序。按照主键的顺序插入行是把数据装入InnoDB表最快的方法。如果没有按照主键顺序插入数据,那么在插入之后最好使用OPTIMIZE TABLE重新组织一下表。

3.更新聚集索引列是昂贵的,因为它强制InnoDB把每个更新的迁移到新的位置。

3.建立在聚集索引上的表在插入新行,或者在行的主键被更新,该行必须被移动的时候会进行分页。分布发生在行的键值要求行必须被放到一个已经放满了数据的页的时候,此时存储引擎必须分页才能容纳该行。分页会导致表占用更多的磁盘空间

4.聚集表可能会比全表扫描慢,尤其在表存储得比较稀疏或因为分页而没有顺序存储的时候。

5.第二(非聚集)索引可能会比预想的大,因为它们的叶子节点包含了被引用行的主键列。

6.第二索引访问需要两次索引查找,而不是一次(叶子节点不会保存引用的行的物理位置,而是保持了行的主键值)


这意味着为了从第二索引查找行,存储引擎首先要找到叶子,然后使用保存在那里的主键值找到主键。最终找到行。这需要两次动作,两次B-Tree导航(在InnoDB中,自适应哈希索引能减少这种损失)


如果正在使用InnoDB并且不需要任何特定的聚集,就可以定义一个代理键。它是一种主键,但是值和应用程序无关。最简单的方法是使用AUTO_INCREMENT列。这会是顺序插入的并且能提高使用主键联接的性能,减少分页和碎片产生。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
5天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
42 9
|
1月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
159 66
|
9天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
50 18
|
2天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
24 8
|
8天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
17 7
|
7天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
27 5
|
11天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
63 7
|
27天前
|
关系型数据库 MySQL Java
MySQL索引优化与Java应用实践
【11月更文挑战第25天】在大数据量和高并发的业务场景下,MySQL数据库的索引优化是提升查询性能的关键。本文将深入探讨MySQL索引的多种类型、优化策略及其在Java应用中的实践,通过历史背景、业务场景、底层原理的介绍,并结合Java示例代码,帮助Java架构师更好地理解并应用这些技术。
26 2
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
251 1
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
104 0

推荐镜像

更多
下一篇
DataWorks