使用Eclipse Memory Analyzer进行内存泄漏分析三部曲

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:

源地址:http://seanhe.iteye.com/blog/898277


一、准备工作 
分析较大的dump文件(根据我自己的经验2G以上的dump文件就需要使用以下介绍的方法,不然mat会出现oom)需要调整虚拟机参数 
找个64位的系统在MemoryAnalyzer.ini设置-Xmx2g 
如果是32位的xp可以使用下面的方法进行尝试:

  • 安装jrockit 6.0的JDK
  • mat使用jrockit的jdk来启动
    Java代码   收藏代码
    1. -vm  
    2. D:/Program Files/Java/jrockit-R28.0.0-jre1.6.0_17/bin/jrockit/jvm.dll  
    3. -vmargs  
    4. -Xmx1700m  


    二、开始使用MAT进行OOM分析 
    第一步,启动mat ,选择File->Open Heap Dump 选择你的dump文件。下面开始等待,mat解析dump文件需要花一些时间,在解析的同时会在硬盘上写入一些解析结果文件,这样下次打开时速度会快很多。有时候mat在解析过程中可能会出现出错的情况,这个时候可以将那些临时文件删除以后重试第一步,如果你的rp够好的话重试也许会解析成功。 

    第二步,查看内存泄漏分析报表。mat解析完成以后会出现如下图的提示: 
     
    因为我们就是为了查找内存泄漏的问题,所以保持默认选项直接点“Finish”就可以。 
    Mat会非常直观的展现内存泄漏的可疑点,类似下面的报表可以直接看到某个线程占用了大量的内存 

    问题的详细分析信息: 


    第三步,开始寻找导致内存泄漏的代码点。这时往往需要打开对象依赖关系树形视图,点击如图按钮即可。 
     
    这时会看到如下视图 

    这个视图的左边大区域可以看到对象的依赖关系,选中某个对象以后可以在左边小窗口查看对象的一些属性。如果属性的值是一些内存地址你还可以点击工具栏的搜索按钮来搜索具体的对象信息。在进行具体分析的时候MAT只是起了帮助你进行分析的工具的功能,OOM问题分析没有固定方法和准则。只能发挥你敏锐的洞察力,结合源代码,对内存中的对象进行分析从而找到代码中的BUG. 

    使用贴士: 
    关于shallow size、retained size(摘自http://www.360doc.com/content/11/0830/16/4520139_144514377.shtml) 
    Shallow size就是对象本身占用内存的大小,不包含对其他对象的引用,也就是对象头加成员变量(不是成员变量的值)的总和。在32位系统上,对象头占用8字节,int占用4字节,不管成员变量(对象或数组)是否引用了其他对象(实例)或者赋值为null它始终占用4字节。故此,对于String对象实例来说,它有三个int成员(3*4=12字节)、一个char[]成员(1*4=4字节)以及一个对象头(8字节),总共3*4 +1*4+8=24字节。根据这一原则,对String a=”rosen jiang”来说,实例a的shallow size也是24字节 

    Retained size是该对象自己的shallow size,加上从该对象能直接或间接访问到对象的shallow size之和。换句话说,retained size是该对象被GC之后所能回收到内存的总和。为了更好的理解retained size,不妨看个例子。 

    把内存中的对象看成下图中的节点,并且对象和对象之间互相引用。这里有一个特殊的节点GC Roots,正解!这就是reference chain的起点。 
     
    从obj1入手,上图中蓝色节点代表仅仅只有通过obj1才能直接或间接访问的对象。因为可以通过GC Roots访问,所以左图的obj3不是蓝色节点;而在右图却是蓝色,因为它已经被包含在retained集合内。 
    所以对于左图,obj1的retained size是obj1、obj2、obj4的shallow size总和;右图的retained size是obj1、obj2、obj3、obj4的shallow size总和。obj2的retained size可以通过相同的方式计算。 

    如何查看某一个对象占用的内存空间 
    1.按以下方式打开新窗口即可 

    2.输入类名(输入类的全名) 
     


    本文转自 一点点征服   博客园博客,原文链接: http://www.cnblogs.com/ldq2016/p/6632174.html ,如需转载请自行联系原作者

相关文章
|
19天前
|
Web App开发 监控 JavaScript
监控和分析 JavaScript 内存使用情况
【10月更文挑战第30天】通过使用上述的浏览器开发者工具、性能分析工具和内存泄漏检测工具,可以有效地监控和分析JavaScript内存使用情况,及时发现和解决内存泄漏、过度内存消耗等问题,从而提高JavaScript应用程序的性能和稳定性。在实际开发中,可以根据具体的需求和场景选择合适的工具和方法来进行内存监控和分析。
|
1月前
|
编译器 C语言
动态内存分配与管理详解(附加笔试题分析)(上)
动态内存分配与管理详解(附加笔试题分析)
49 1
|
2月前
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
53 2
|
13天前
|
开发框架 监控 .NET
【Azure App Service】部署在App Service上的.NET应用内存消耗不能超过2GB的情况分析
x64 dotnet runtime is not installed on the app service by default. Since we had the app service running in x64, it was proxying the request to a 32 bit dotnet process which was throwing an OutOfMemoryException with requests >100MB. It worked on the IaaS servers because we had the x64 runtime install
|
23天前
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
143 9
|
28天前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
1月前
|
程序员 编译器 C语言
动态内存分配与管理详解(附加笔试题分析)(下)
动态内存分配与管理详解(附加笔试题分析)(下)
47 2
|
2月前
|
算法 程序员 Python
程序员必看!Python复杂度分析全攻略,让你的算法设计既快又省内存!
在编程领域,Python以简洁的语法和强大的库支持成为众多程序员的首选语言。然而,性能优化仍是挑战。本文将带你深入了解Python算法的复杂度分析,从时间与空间复杂度入手,分享四大最佳实践:选择合适算法、优化实现、利用Python特性减少空间消耗及定期评估调整,助你写出高效且节省内存的代码,轻松应对各种编程挑战。
41 1
|
2月前
|
存储 Prometheus NoSQL
Redis 内存突增时,如何定量分析其内存使用情况
【9月更文挑战第21天】当Redis内存突增时,可采用多种方法分析内存使用情况:1)使用`INFO memory`命令查看详细内存信息;2)借助`redis-cli --bigkeys`和RMA工具定位大键;3)利用Prometheus和Grafana监控内存变化;4)优化数据类型和存储结构;5)检查并调整内存碎片率。通过这些方法,可有效定位并解决内存问题,保障Redis稳定运行。
|
1月前
|
SQL 安全 算法
ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)
ChatGPT高效提问—prompt实践(漏洞风险分析-重构建议-识别内存泄漏)

推荐镜像

更多
下一篇
无影云桌面