mysql 在大型应用中的架构演变

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介:

文正整理自:http://www.csdn.net/article/2014-06-10/2820160

可扩展性

架构的可扩展性往往和并发是息息相关,没有并发的增长,也就没有必要做高可扩展性的架构,这里对可扩展性进行简单介绍一下,常用的扩展手段有以下两种:

  • Scale-up:纵向扩展,通过替换为更好的机器和资源来实现伸缩,提升服务能力
  • Scale-out:横向扩展,  通过加节点(机器)来实现伸缩,提升服务能力

对于互联网的高并发应用来说,无疑横向扩展才是出路,同时通过纵向购买更高端的机器也一直是我们所避讳的问题,也不是长久之计。那么,在横向扩展的理论下,可扩展性的理想状态是什么?

可扩展性的理想状态

一个服务,当面临更高的并发的时候,能够通过简单增加机器来提升服务支撑的并发度,且增加机器过程中对线上服务无影响(no down time),这就是可扩展性的理想状态! 

架构的演变

V1.0  简单网站架构

一个简单的小型网站或者应用背后的架构可以非常简单,数据存储只需要一个Mysql Instance就能满足数据读取和写入需求(这里忽略掉了数据备份的实例),处于这个时间段的网站,一般会把所有的信息存到一个Database Instance里面。

在这样的架构下,我们来看看数据存储的瓶颈是什么?

  • 数据量的总大小  一个机器放不下
  • 数据的索引(B+ Tree)一个机器的内存放不下 
  • 访问量(读写混合)一个实例不能承受

只有当以上3件事情任何一件或多件满足时,我们才需要考虑往下一级演变。 从此我们可以看出,事实上对于很多小公司小应用,这种架构已经足够满足他们的需求了,初期数据量准确评估是杜绝过度设计很重要的一环,毕竟没有人愿意为不可能发生的事情而浪费自己的精力。

这里简单举个我的例子,对于用户信息这类表 (3个索引),16G内存能放下,大概2000万行数据的索引,简单的读和写混合访问量3000/s左右没有问题,你的应用场景是否?

V2.0 垂直拆分

一般当V1.0 遇到瓶颈时,首先最简便的拆分方法就是垂直拆分,何谓垂直?就是从业务角度来看,将关联性不强的数据拆分到不同的Instance上,从而达到消除瓶颈的目标。以图中的为例,将用户信息数据,和业务数据拆分到不同的三个实例上。对于重复读类型比较多的场景,我们还可以加一层Cache,来减少对DB的压力。

在这样的架构下,我们来看看数据存储的瓶颈是什么?

单实例单业务依然存在V1.0所述瓶颈:遇到瓶颈时可以考虑往本文更高V版本升级,若是读请求导致达到性能瓶颈可以考虑往V3.0升级, 其他瓶颈考虑往V4.0升级。

V3.0  主从架构

此类架构主要解决V2.0架构下的读问题,通过给Instance挂数据实时备份的思路来迁移读取的压力,在MySQL的场景下就是通过主从结构,主库抗写压力,通过从库来分担读压力,对于写少读多的应用,V3.0主从架构完全能够胜任。

在这样的架构下,我们来看看数据存储的瓶颈是什么?很明了,写入量主库不能承受。

V4.0  水平拆分

对于V2.0、V3.0方案遇到瓶颈时,都可以通过水平拆分来解决,水平拆分和垂直拆分有较大区别,垂直拆分拆完的结果,在一个实例上是拥有全量数据的,而水平拆分之后,任何实例都只有全量的1/n的数据,以下图UserInfo的拆分为例,将UserInfo拆分为3个Cluster,每个Cluster持有总量的1/3数据,3个Cluster数据的总和等于一份完整数据。

注:这里不再叫单个实例 而是叫一个Cluster 代表包含主从的一个小MySQL集群。

那么,这样架构中的数据该如何路由?

1. Range拆分 

sharding key按连续区间段路由,一般用在有严格自增ID需求的场景上,如UserId、UserId Range的小例子,以UserId 3000万为Range进行拆分:1号Cluster的UserId是1-3000万,2号Cluster  UserId是 3001万-6000万。

2. List拆分

List拆分与Range拆分思路一样,都是通过给不同的sharding key来路由到不同的Cluster,但是具体方法有些不同。List主要用来做sharding key不是连续区间的序列落到一个Cluster的情况,如以下场景:

假定有20个音像店,分布在4个有经销权的地区,如下表所示: 

 

 

地区  商店ID 号 
北区  3, 5, 6, 9, 17 
东区  1, 2, 10, 11, 19, 20 
西区  4, 12, 13, 14, 18 
中心区  7, 8, 15, 16 

业务希望能够把一个地区的所有数据组织到一起来搜索,这种场景List拆分可以轻松搞定

 

3. Hash拆分

通过对sharding key 进行哈希的方式来进行拆分,常用的哈希方法有除余,字符串哈希等等,除余如按UserId%n的值来决定数据读写哪个Cluster,其他哈希类算法这里就不细展开讲了。

4. 数据拆分后引入的问题

数据水平拆分引入的问题主要是只能通过sharding key来读写操作,例如以UserId为sharding key的切分例子,读UserId的详细信息时,一定需要先知道UserId,这样才能推算出在哪个Cluster进而进行查询,假设我需要按UserName进行检索用户信息,需要引入额外的反向索引机制(类似HBase二级索引),如在Redis上存储username->userid的映射,以UserName查询的例子变成了先通过查询username->userid,再通过userid查询相应的信息。

实际上这个做法很简单,但是我们不要忽略了一个额外的隐患,那就是数据不一致的隐患。存储在Redis里的username->userid和存储在MySQL里的userid->username必须需要是一致的,这个保证起来很多时候是一件比较困难的事情,举个例子来说,对于修改用户名这个场景,你需要同时修改Redis和Mysql。这两个东西是很难做到事务保证的,如MySQL操作成功,但是Redis却操作失败了(分布式事务引入成本较高)。对于互联网应用来说,可用性是最重要的,一致性是其次,所以能够容忍小量的不一致出现. 毕竟从占比来说,这类的不一致的比例可以微乎其微到忽略不计。(一般写更新也会采用mq来保证直到成功为止才停止重试操作)

在这样的架构下,我们来看看数据存储的瓶颈是什么?

在这个拆分理念上搭建起来的架构,理论上不存在瓶颈(sharding key能确保各Cluster流量相对均衡的前提下)。不过确有一件恶心的事情,那就是Cluster扩容的时候重做数据的成本,如我原来有3个Cluster,但是现在我的数据增长比较快,我需要6个Cluster,那么我们需要将每个Cluster 一拆为二,一般的做法是:

  1. 摘下一个slave,停同步
  2. 对写记录增量log(实现上可以业务方对写操作多一次写持久化mq或者MySQL主创建trigger记录写等等方式)
  3. 开始对静态slave做数据一拆为二
  4. 回放增量写入,直到追上的所有增量,与原Cluster基本保持同步
  5. 写入切换,由原3 Cluster 切换为6 Cluster

有没有类似飞机空中加油的感觉,这是一个脏活,累活,容易出问题的活,为了避免这个,我们一般在最开始的时候,设计足够多的sharding cluster来防止可能的Cluster扩容这件事情。

V5.0  云计算 腾飞(云数据库)

云计算现在是各大IT公司内部作为节约成本的一个突破口,对于数据存储的MySQL来说,如何让其成为一个SaaS是关键点。在MS的官方文档中,把构建一个足够成熟的SaaS(MS简单列出了SAAS应用的4级成熟度)所面临的3个主要挑战:可配置性,可扩展性,多用户存储结构设计称为"three headed monster"。可配置性和多用户存储结构设计在MySQL SaaS这个问题中并不是特别难办的一件事情,所以这里重点说一下可扩展性。

MySQL作为一个SaaS服务,在架构演变为V4.0之后,依赖良好的sharding key设计,已经不再存在扩展性问题,只是他在面对扩容缩容时,有一些脏活需要干,而作为SaaS,并不能避免扩容缩容这个问题,所以只要能把V4.0的脏活变成:第1,扩容缩容对前端APP透明(业务代码不需要任何改动);第2,扩容缩容全自动化且对在线服务无影响。如果实现了这两点,那么他就拿到了作为SaaS的门票。

对于架构实现的关键点,需要满足对业务透明,扩容缩容对业务不需要任何改动,那么就必须eat our own dog food,在你MySQL SaaS内部解决这个问题,一般的做法是我们需要引入一个Proxy,Proxy来解析SQL协议,按sharding key来寻找Cluster,判断是读操作还是写操作来请求Master或者Slave,这一切内部的细节都由Proxy来屏蔽。

对于架构实现的关键点,扩容缩容全自动化且对在线服务无影响; 扩容缩容对应到的数据操作即为数据拆分和数据合并,要做到完全自动化有非常多不同的实现方式,总体思路和V4.0介绍的瓶颈部分有关,目前来看这个问题比较好的方案就是实现一个伪装Slave的Sync Slave,解析MySQL同步协议,然后实现数据拆分逻辑,把全量数据进行拆分。具体架构见下图:

其中Sync Slave对于Original Master来说,和一个普通的Mysql Slave没有任何区别,也不需要任何额外的区分对待。需要扩容/缩容时,挂上一个Sync slave,开始全量同步+增量同步,等待一段时间追数据。以扩容为例,若扩容后的服务和扩容前数据已经基本同步了,这时候如何做到切换对业务无影响? 其实关键点还是在引入的Proxy,这个问题转换为了如何让Proxy做热切换后端的问题。这已经变成一个非常好处理的问题了。

另外值得关注的是:2014年5月28日——为了满足当下对Web及云应用需求,甲骨文宣布推出MySQL Fabric,在对应的资料部分我也放了很多Fabric的资料,有兴趣的可以看看,说不定会是以后的一个解决云数据库扩容缩容的手段。 

V more ?

等待革命……

淘宝用例 

Mysql  Fabric

本文转自 张冲andy 博客园博客,原文链接: http://www.cnblogs.com/andy6/p/5789252.html   ,如需转载请自行联系原作者
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
3月前
|
SQL 监控 关系型数据库
MySQL事务处理:ACID特性与实战应用
本文深入解析了MySQL事务处理机制及ACID特性,通过银行转账、批量操作等实际案例展示了事务的应用技巧,并提供了性能优化方案。内容涵盖事务操作、一致性保障、并发控制、持久性机制、分布式事务及最佳实践,助力开发者构建高可靠数据库系统。
|
2月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
286 6
|
3月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
3月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
490 0
|
2月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
4月前
|
存储 关系型数据库 MySQL
MYSQL数据加密压缩函数应用实战指南。
总的来说,加密和压缩是维护MySQL数据库中数据安全性和效率的有效手段。使用时需权衡性能与安全,合理应用加密和压缩函数。在设计数据库架构时要考虑到加密字段的查询性能,因为加密可能使得一些索引失效。压缩数据能有效减少存储空间的占用,但在服务器负载较高时应避免实时压缩和解压,以免影响总体性能。
183 10
|
4月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
285 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
4月前
|
机器学习/深度学习 数据采集 存储
技术赋能下的能源智慧管理:MyEMS 开源系统的架构创新与应用深化
在全球能源转型与“双碳”战略推动下,MyEMS作为基于Python的开源能源管理系统,凭借模块化架构与AI技术,助力重点用能单位实现数字化、智能化能源管理。系统支持多源数据采集、智能分析、设备数字孪生与自适应优化控制,全面满足国家级能耗监测要求,并已在制造、数据中心、公共建筑等领域成功应用,助力节能降碳,推动绿色可持续发展。
147 0
|
2月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路

推荐镜像

更多