R语言:数据输出至文件

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

问题

如果你想将数据写进一个文件,应该怎样操作?

解决方案

写入分隔符文本文件

用 write.csv() 将数据写入一个文件是最简单的方法。 write.csv() 默认包括行名,但是这通常是不必要的,这种默认可能会导致迷惑。

# 一个样本数据框data <- read.table(header=TRUE, text='
 subject sex size       1   M    7
       2   F    NA
       3   F    9
       4   M   11
 ')# 写入文件,取消默认行名write.csv(data, "data.csv", row.names=FALSE)# 同上,只是‘NA’由空白格代替write.csv(data, "data.csv", row.names=FALSE, na="")# 使用制表符,取消行名和列名write.table(data, "data.csv", sep="\t", row.names=FALSE, col.names=FALSE)

保存为 R 数据格式

write.csv() 和 write.table() 与其它数据分析程序的互操作性是最好的。然而,它们不会保护数据结构的特殊属性,如列是否为字符型或因素,或者因素水平的顺序。为了做到这一点,它需要在特殊的 R 格式下写出来。

下面是三种主要的方法:

第一个方法:输出R源代码,运行时,将重新创建该对象。这针对大多数数据对象,但它可能无法重建一些更复杂的数据对象。

# 保存为文本格式,容易被 R 加载dump("data", "data.Rdmpd")# 可以保存多个对象dump(c("data", "data1"), "data.Rdmpd")# 重新加载数据 source("data.Rdmpd")# 当加载数据时,原始数据的名称将自动被使用

下一个方法是写出 RDS 格式的数据对象,这种格式可以是二进制的,也可以是 ASCII。二进制格式更紧凑,ASCII 格式在像 Git 版本控制系统时则更高效。

# 二进制 RDS 格式保存单个对象saveRDS(data, "data.rds")# 或者,用 ASCII 格式saveRDS(data, "data.rds", ascii=TRUE)# 重新加载数据data <- readRDS("data.rds")

用 RData 格式可以将多个对象保存到一个的文件.

# 二进制 RData 格式保存多个对象save(data, file="data.RData")# 或者,用 ASCII 格式save(data, file="data.RData", ascii=TRUE)# 可以保存多个对象save(data, data1, file="data.RData")# 重新加载数据load("data.RData")

saveRDS() 和 save()最重要的区别:当你用 saveRDS() 保存数据时,你指定对象的名称;当你用 save() 加载数据时,它将自动使用原始对象的名称。自动使用原始对象名称有时可以简化工作流程,但是当它在不同的环境中使用将数据分配给其它对象时也是有缺点的。










本文转自 h2appy  51CTO博客,原文链接:http://blog.51cto.com/h2appy/1857242,如需转载请自行联系原作者
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
4月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
5月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5月前
|
SQL 数据挖掘 数据处理
R语言数据操作:使用dplyr进行数据处理的深度探索
【8月更文挑战第27天】`dplyr`包以其简洁、强大的数据处理能力,在R语言的数据分析领域占据了重要地位。通过`select()`、`filter()`、`arrange()`、`mutate()`和`summarise()`等核心函数,结合管道操作符`%>%`,我们可以轻松地完成数据筛选、排序、变换和汇总等操作。掌握`dplyr`的使用,将极大地提高我们在R语言中进行
|
7月前
|
Python
R语言遍历文件夹求取其中所有栅格文件的平均值
通过NAvalue(tif_file_all) <- -10000这句代码,将值为-10000的像元作为NoData值的像元,防止后期计算平均值时对结果加以干扰。   接下来,我们通过file.path()函数配置一下输出结果的路径——其中,结果遥感影像文件的名称就可以直接以其所对应的条带号来设置,并在条带号后添加一个_mean后缀,表明这个是平均值的结果图像;但此外,这个仅仅是文件的名字,还需要将文件名与路径拼接在一起,才可以成为完整的保存路径,因此需要用到file.path()函数。最后,将结果图像通过writeRaster()函数加以保存即可,这句代码的解释大家同样参考R语言求取大量遥感
192 0
|
8月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)