你是我的眼:人工智能帮助失明者避开路面障碍

简介:

开发者Elaine Wong的心中有一个特殊用户:她天生失明的儿子。

你是我的眼:人工智能帮助失明者避开路面障碍

研究人员和各个企业多年来一直努力发明各种装置,帮助视力障碍人士避开路面上的障碍,例如桌子椅子。许多类似设备利用超声波传感器来监测障碍物。挂在脖子上的Pathsounder项目已经停止,另外还有笨重的NavBelt是系在腰上使用,以及带有轮子的GuideCane,都是类似的例子。

不过,还有另一种暗藏在脚下的障碍——路面上那些微小的坑洼、台阶、路缘线或者断层,都可能会让步行者绊倒,或者让轮椅突然倾倒。对于这些细微的路面障碍,大部分高科技监测系统都没什么办法。

“对于这些不向外突出的障碍物,我们还不知道有什么监测设备比较好用。”Elaine Wong说,她是澳大利亚墨尔本大学的电子工程师。

在两家非盈利合作机构以及Ian Potter基金的帮助下,Wong制造了一个监测系统原型,利用了一个摄像头和激光来监测地面的坑洼等其他路面障碍。该系统结合了图像处理与机器学习,来分析用户周围的环境,在用户走动过程中提供声音指引。Wong上周在马来西亚举行的IEEE国际通信大会上呈现了她的作品。项目仍在进行中。目前,她的原型经过了3项小型测试,共使用了15个坑洼,原型能够正确识别至少90%的坑洼。

为了让系统真正发挥作用,她还需要在更多的测试中确认原型的能力,进一步提升系统精度。她希望调试机器学习算法的参数或者调整激光像素。她还需要创建一个实时版本的系统,因为目前测试中的图像处理是离线完成的。最后,她使用的激光只能在黑暗环境中使用,因此她还希望在接下来的版本中使用其他的激光。

Wong分别测试了两种激光模式作为监测方式,一种是投射一个激光网格,另一种以十字的形状投射。激光扫描用户面前的路面并返回设备时,系统会记录激光的强度。如果路面平整,激光会以完整的强度值返回,告诉用户这是一个平整的路面,例如人行道。但是如果激光由于路面坑洞必须传输更远的距离,模式中的这个部分就会比较微弱。

系统中的相机(目前是一个HD模式的GoPro相机)以15帧每秒记录激光模式。为了解读这些图像,Wong使用了机器学习与图像处理。她开发了可以发现激光模式中异常情况的算法,并将激光光点标记为一个坑洼。此时,系统会说“发现坑洼”。(她考虑过使用震动来提示用户,但是认为让系统大声说出来是最方便的办法。)十字模式的分析比网格模式更能带来高精度的结果。

Wong的目标是最终开发一个方便使用、价格便宜的路面障碍监测系统。“你希望系统可以快、可以小、并且复杂度低。”她说。

她的第一个版本设计是绑在步行者身上,或者绑在轮椅上,因为许多视力障碍人士依靠这些设备,而要使用导盲犬或拐杖发现障碍是比较难的。

在她看来,类似设备的潜在市场很大——世界卫生组织(WHO)称,全球视力障碍人士大约有二亿八千五百万人。不过,Wong心里最关心的是一个特殊用户——她的儿子生来便失明。她说:“希望这项产品真正实现的时候,他会为我感到骄傲。”


原文发布时间: 2016-05-31 13:41
本文来自云栖社区合作伙伴镁客网,了解相关信息可以关注镁客网。
相关文章
|
数据采集 人工智能 机器人
AI日报:欧盟人工智能法案通过后行业面临合规障碍
AI日报:欧盟人工智能法案通过后行业面临合规障碍
AI日报:欧盟人工智能法案通过后行业面临合规障碍
|
人工智能 算法 机器人
与人工智能做同事,你需要克服哪些障碍
随着技术让工作越来越自动化,每年都有数以万计的人离职或就业,数以亿计的人必须学习新技能和新工作方式。但更广泛的证据表明,公司部署智能机器会阻碍这一关键的学习渠道:我和我的同事发现,人工智能会让新手失去学习机会,让老手减少实践机会,迫使两者必须同时掌握新方法和旧方法,令他们不堪重负。
200 0
与人工智能做同事,你需要克服哪些障碍
|
机器学习/深度学习 人工智能 算法
人工智能之眼:运用科技消除可预防失明
人工智能(AI)和生物技术可以通过植入物、凝胶、更好的诊断以及更多的教育来提供对抗可预防失明的方法。
人工智能之眼:运用科技消除可预防失明
|
11月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
339 21
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
283 11
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
936 0
|
机器学习/深度学习 数据采集 人工智能
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
555 13
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建