Python机器学习算法入门之简单感知器学习算法

简介:

问题背景

考虑一个问题:现在我们有一些过往核发信用卡的资料,包括用户个人信息和审核结果。根据这些资料,我们希望预测能不能给下一个用户发信用卡。用户基本信息如下:


这些基本信息组成了一个向量。不同的信息有不同的权重,设权重向量。我们希望构造一个函数来给用户的信用打分,并且,如果信用分超过了某个阈值,我们就认为这个客户是可靠的,可以给他发信用卡:

能发:
不能:

通过阶跃函数,进一步将这个过程函数化:


所以,当,通过;当,拒绝;当,忽略。

其中: 


整理该方程如下: 


具体到二维空间

简化上面的问题,假设用户只有两个属性,就可以用二维空间的一个点来表示一个用户。如下所示,蓝圈表示通过,红叉表示拒绝。注意到直线的两边,一边大于0,一边小于0,也就是一边都是蓝圈,一边都是红叉。所以现在的目标就是,找到一条直线,可以将已知的蓝圈和红叉完美区分开。


基础知识回顾

简单回顾一下线性代数的知识。一条直线可以由一个点和法向量 唯一确定。其点法式方程为:。相应地,其方向向量为:


感知机学习算法


简单感知机算法(Perceptron Learning Algorithm,PLA)的思路很简单,首先随便找一条直线,然后遍历每一个已知点,如果正确,则跳过;如果错误,则利用这个点的信息对直线进行修正。修正的思路如上图所示:是直线的法向量。是错误点的方向向量,是真实值。具体情况可分为如下两种情况:

情况一:


为了将这个出错的点包括进紫色区域,应该靠近方向。因此,

情况二:


为了将这个出错的点排除出紫色区域,应该远离方向。因此,


综上,得到修正函数:


证明:PLA校正的正确性

那么为什么感知机算法可以逐步接近正确呢?

已知

两边同时乘上,得:

因为,所以:

注意到恰好就是我们给出的当前用户的分数。当,也就是我们打分打低了,修正后分数上升;当,也就是我们打分打高了,修正后分数下降。这个结论说明,对于这组错误数据,经过修正以后,我们打出的分数更靠近正确结果了。

证明:PLA终止的充分条件

从算法的规则上可以看出,PLA终止的必要条件是数据集中确定存在一条直线,可以将蓝圈和红叉分开,也就是线性可分: 


现在证明,线性可分是PLA终止的充分条件。

(1) 设表示第t次更新时的点,一共更新了n次。若线性可分,则必然存在一条完美的直线,使得对,有。也就是:


为向量内积,也就是)又由的更新规则得: 


因此: 


综上,得到: 


初始时,所以: 


(2) 因为每次遇到错误的数据才会更新,也就是。其中 是第t次更新时的权重值。因此: 


类似于(1),得到: 


(3) 综上,得:


是一个常数,因此,随着t的增大,也逐步增大,也就是向量的夹角逐渐减小,逐渐接近。 
又因为:
,所以。因此,PLA算法必然收敛。

Linear Pocket Algorithm

上述PLA算法的前提是数据集线性可分。但是很明显,在分类之前我们不可能知道我们手里的数据是不是线性可分的。更何况,数据集可能有噪声(noise),这些噪声是之前的经验中错误的分类结果,这些噪声将导致PLA无法收敛。因此,我们的目标就从找到一条完美划分数据集的,变成了找到一条最接近完美,使得错误的点最少。这个转变使得我们可以理非线性可分的数据集 :


但是很遗憾的是,寻找 是一个NP-hard问题。

因此问题又从“寻找最接近完美的变成了“寻找尽可能完美的。Pocket Algorithm是PLA的变形,用于处理此类问题。算法如下: 


与简单PLA不同的是:

Pocket Algorithm事先设定迭代次数,而不是等算法自己收敛;
随机遍历数据集,而不是循环遍历;

遇到错误点校正时,只有当新得到的优于(也就是错误更少)时才更新。因为Pocket要比较错误率,需要计算所有的数据点,因此效率要低于PLA。

如果数据集巧合是线性可分的,只要迭代次数够多,Pocket和PLA的效果是一样的,只是速度慢。

实践

讲了这么多理论知识,现在用python实践一下这个算法。简单起见,这里已知数据集是线性可分的,直接采用简单PLA就可以解决。核心代码不到20行,只需要理解train()函数即可,其它部分都是为了把这个图画出来。


运行效果如下: 


原文发布时间为:2017-02-19 

本文作者:ZZR

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”微信公众号

相关文章
|
6天前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
64 1
|
11天前
|
调度 数据库 Python
Python异步编程入门:asyncio让并发变得更简单
Python异步编程入门:asyncio让并发变得更简单
77 5
|
11天前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
|
11天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
|
11天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
|
11天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
|
11天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
|
7月前
|
C语言 Python
Python学习:内建属性、内建函数的教程
本文介绍了Python中的内建属性和内建函数。内建属性包括`__init__`、`__new__`、`__class__`等,通过`dir()`函数可以查看类的所有内建属性。内建函数如`range`、`map`、`filter`、`reduce`和`sorted`等,分别用于生成序列、映射操作、过滤操作、累积计算和排序。其中,`reduce`在Python 3中需从`functools`模块导入。示例代码展示了这些特性和函数的具体用法及注意事项。
103 2
|
11月前
|
存储 算法 API
Python学习五:函数、参数(必选、可选、可变)、变量、lambda表达式、内置函数总结、案例
这篇文章是关于Python函数、参数、变量、lambda表达式、内置函数的详细总结,包含了基础知识点和相关作业练习。
147 0
|
存储 Python Windows
【Python学习篇】Python实验小练习——函数(十)
【Python学习篇】Python实验小练习——函数(十)
93 1

热门文章

最新文章

推荐镜像

更多