AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

简介: AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

一.引言

身处2024年,大模型技术从底层模型到AI应用都卷的要命,我们可以说是幸运的,也可以是幸福的,当然,学习的路上,不停的追赶,必定是疲惫的。分享一些丝滑的大模型技术栈内的项目,让大家疲惫并快乐着。

今天要讲的是一个大模型推理服务框架-Ollama,对比的还有Xinference、OpenLLM、LocalAI,从丝滑角度而言(这里特别强调一下,我所讲的丝滑,指的是众所周知的网络环境下,学习、部署、应用等环节,坑最少,最易上手),Ollama>=Xinference>LocalAI>OpenLLM。今天重点将Ollama,其他框架另起篇幅。

二.一行代码完成Ollama本地部署

这里由衷推荐docker部署,一行代码搞定

docker run -d --gpus=all -v /yourworkspaces/Ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

docker参数:

-d:后台运行

--gpus=all:使用所有的gpu

-v /xxx/ollama:/root/.ollama:-v是目录挂载参数,“:”前后指将container目录/root/.ollama挂载至本地目录/xxx/ollama上

-p 11434:11434:-p是端口映射参数,“:”前指宿主机对外端口,“:”后指container服务端口

--name:container启动后的名称,启动后docker stop,docker restart均要接这个名称,如果未制定随机生成一个

ollama/ollama:docker hub库中发行商及项目,实际地址为https://hub.docker.com/r/ollama/ollama

执行docker命令后,会从docker hub库中pull镜像,大约30秒左右完成container部署

docker ps查看container状态:

CONTAINER ID:随机生成的容器ID

IMAGE:container启动依赖的镜像,这里是ollama/ollama

COMMAND:container启动后自动执行的命令,这里是/bin/ollama serve

CREATED:启动时间

STATUS:服务了多长时间

PORTS:端口映射,0:0:0:0:11434指container内端口,11434/tcp指宿主机端口

浏览器输入宿主机ip比如123.123.123.123:11434,页面出现如下提示即为启动成功。

三.一行代码使用Ollama部署大语言模型推理服务

还是一行代码,比如部署mistral

docker exec -it ollama ollama run mistral

仅需要大概1分钟,ollama会从自己的库中将模型pull至本地,万兆网卡下达100MB/s,跟modelscope速度相当。

四.推理服务测试

1.终端命令行运行

如图,直接对话即可

2.curl运行

generate补全:

curl http://123.123.123.123:11434/api/generate -d '{  "model": "mistral",  "prompt":"who are you?","stream":false}'

返回结果:

chat对话:

curl http://123.123.123.123:11434/api/chat -d '{  "model": "mistral",  "messages": [    { "role": "user", "content": "why is the sky blue?" }  ],"stream":false}'

返回结果:

3.dify平台:模型供应商添加Ollama

支持的模型:GitHub - ollama/ollama: Get up and running with Llama 3, Mistral, Gemma, and other large language models.

五.总结

由于现实工作较忙,只能抽下班时间将工作中实操过的内容进行简要记录,首先是作为个人笔记怕过一段时间忘记,其次是以输出强化输入的学习方法将知识分享给大家的同时强化自己的理解,本文有3个地方由于时间关系放到后面的文章详细说明。

1、通过Ollama部署自定义模型;

2、关于docker:我认为这是学习大模型技术必备的工具,开源项目层出不穷,对于自己愿意深入了解的可以用conda+pip的方式逐步安装,对于工具型的框架,如果只是为了拓宽知识广度,最高效的方式还是通过docker或者docker compose先跑起来。后面会用更多的篇幅介绍docker;

3、 dify平台:一个开源的AI原生应用开发平台,大幅提升AI智能体开发效率,与FastGPT类似,但感觉要比FastGPT好用得多

目录
相关文章
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
750 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
4月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1272 6
|
4月前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
4月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
1549 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
4月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
486 115
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1791 16
构建AI智能体:一、初识AI大模型与API调用
|
4月前
|
存储 机器学习/深度学习 人工智能
构建AI智能体:三、Prompt提示词工程:几句话让AI秒懂你心
本文深入浅出地讲解Prompt原理及其与大模型的关系,系统介绍Prompt的核心要素、编写原则与应用场景,帮助用户通过精准指令提升AI交互效率,释放大模型潜能。
800 5

热门文章

最新文章