mongodb aggregate mapReduce and group

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

Aggregate

    MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果,类似sql语句中的 count(*)

wKiom1esNbzArz3fAAEphtHnCA8126.png

语法如下:

    db.collection.aggregate()

    db.collection.aggregate(pipeline,options)

    db.runCommand({

    aggregate: "<collection>",

    pipeline: [ <stage>, <...> ],

    explain: <boolean>,

    allowDiskUse: <boolean>,

    cursor: <document>

    })

    

在使用aggregate实现聚合操作之前,我们首先来认识下几个常用的聚合操作符。 

$project::可以对结果集中的键 重命名,控制键是否显示,对列进行计算。 

$match:  过滤结果集,只输出符合条件的文档。

$skip:  在显示结果的时候跳过前几行并返回余下的文档。

$sort:  对即将显示的结果集排序 

$limit:  控制结果集的大小

$unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值。

$geoNear:输出接近某一地理位置的有序文档。

$group:  分组,聚合,求和,平均数,最大值,最小值,第一个,最后一个,等


表达式    描述                实例

$sum    计算总和            db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$sum : "$likes"}}}])

$avg     计算平均值          db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$avg : "$likes"}}}])

$min     获取集合中所有文档对应值得最小值    db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$min : "$likes"}}}])

$max    获取集合中所有文档对应值得最大值    db.mycol.aggregate([{$group : {_id : "$by_user", num_tutorial : {$max : "$likes"}}}])

$push    在结果文档中插入值到一个数组中     db.mycol.aggregate([{$group : {_id : "$by_user", url : {$push: "$url"}}}])

$addToSet在结果文档中插入值到一个数组中,但不创建副本    db.mycol.aggregate([{$group : {_id : "$by_user", url : {$addToSet : "$url"}}}])

$first    根据资源文档的排序获取第一个文档数据       db.mycol.aggregate([{$group : {_id : "$by_user", first_url : {$first : "$url"}}}])

$last    根据资源文档的排序获取最后一个文档数据    db.mycol.aggregate([{$group : {_id : "$by_user", last_url : {$last : "$url"}}}])


实例:

db.createCollection("emp")

db.emp.insert({_id:1,"ename":"tom","age":25,"department":"Sales","salary":6000})

db.emp.insert({_id:2,"ename":"eric","age":24,"department":"HR","salary":4500})

db.emp.insert({_id:3,"ename":"robin","age":30,"department":"Sales","salary":8000})

db.emp.insert({_id:4,"ename":"jack","age":28,"department":"Development","salary":8000})

db.emp.insert({_id:5,"ename":"Mark","age":22,"department":"Development","salary":6500})

db.emp.insert({_id:6,"ename":"marry","age":23,"department":"Planning","salary":5000})

db.emp.insert({_id:7,"ename":"hellen","age":32,"department":"HR","salary":6000})

db.emp.insert({_id:8,"ename":"sarah","age":24,"department":"Development","salary":7000})

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
use  company
switched to db company
> db.emp.aggregate(
... {$group:{_id: "$department" ,dpct:{$sum: 1 }}}
... )
"_id"  "Development" "dpct"  3  }
"_id"  "HR" "dpct"  2  }
"_id"  "Planning" "dpct"  1  }
"_id"  "Sales" "dpct"  2  }
> db.emp.aggregate(
... {$group:{_id: "$department" ,salct:{$sum: "$salary" },salavg:{$avg: "$salary" }}}
... )
"_id"  "Development" "salct"  21500 "salavg"  7166.666666666667  }
"_id"  "HR" "salct"  10500 "salavg"  5250  }
"_id"  "Planning" "salct"  5000 "salavg"  5000  }
"_id"  "Sales" "salct"  14000 "salavg"  7000  }
> db.emp.aggregate(
... {$match:{age:{$lt: 25 }}}
... )
"_id"  2 "ename"  "eric" "age"  24 "department"  "HR" "salary"  4500  }
"_id"  5 "ename"  "Mark" "age"  22 "department"  "Development" "salary"  6500  }
"_id"  6 "ename"  "marry" "age"  23 "department"  "Planning" "salary"  5000  }
"_id"  8 "ename"  "sarah" "age"  24 "department"  "Development" "salary"  7000  }
> db.emp.aggregate(
... {$match:{age:{$gt: 25 }}},
... {$group:{_id: "$department" ,salct:{$sum: "$salary" },salavg:{$avg: "$salary" }}}
... )
"_id"  "HR" "salct"  6000 "salavg"  6000  }
"_id"  "Development" "salct"  8000 "salavg"  8000  }
"_id"  "Sales" "salct"  8000 "salavg"  8000  }
> db.emp.aggregate(
... {$group:{_id: "$department" ,salct:{$sum: "$salary" },salavg:{$avg: "$salary" }}},
... {$match:{salavg:{$gt: 6000 }}}
... )
"_id"  "Development" "salct"  21500 "salavg"  7166.666666666667  }
"_id"  "Sales" "salct"  14000 "salavg"  7000  }
>
> db.emp.aggregate(
... {$sort:{age: 1 }},{$limit: 3 }
... )
"_id"  5 "ename"  "Mark" "age"  22 "department"  "Development" "salary"  6500  }
"_id"  6 "ename"  "marry" "age"  23 "department"  "Planning" "salary"  5000  }
"_id"  2 "ename"  "eric" "age"  24 "department"  "HR" "salary"  4500  }
> db.emp.aggregate( {$sort:{age:- 1 }},{$limit: 3 } )
"_id"  7 "ename"  "hellen" "age"  32 "department"  "HR" "salary"  6000  }
"_id"  3 "ename"  "robin" "age"  30 "department"  "Sales" "salary"  8000  }
"_id"  4 "ename"  "jack" "age"  28 "department"  "Development" "salary"  8000  }
> db.emp.aggregate( {$sort:{age:- 1 }},{$skip: 4 } )
"_id"  2 "ename"  "eric" "age"  24 "department"  "HR" "salary"  4500  }
"_id"  8 "ename"  "sarah" "age"  24 "department"  "Development" "salary"  7000  }
"_id"  6 "ename"  "marry" "age"  23 "department"  "Planning" "salary"  5000  }
"_id"  5 "ename"  "Mark" "age"  22 "department"  "Development" "salary"  6500  }
>
> db.emp.aggregate( {$project:{ "姓名" : "$ename" , "年龄" : "$age" , "部门" : "$department" , "工资" : "$salary" ,_id: 0 }})
"姓名"  "tom" "年龄"  25 "部门"  "Sales" "工资"  6000  }
"姓名"  "eric" "年龄"  24 "部门"  "HR" "工资"  4500  }
"姓名"  "robin" "年龄"  30 "部门"  "Sales" "工资"  8000  }
"姓名"  "jack" "年龄"  28 "部门"  "Development" "工资"  8000  }
"姓名"  "Mark" "年龄"  22 "部门"  "Development" "工资"  6500  }
"姓名"  "marry" "年龄"  23 "部门"  "Planning" "工资"  5000  }
"姓名"  "hellen" "年龄"  32 "部门"  "HR" "工资"  6000  }
"姓名"  "sarah" "年龄"  24 "部门"  "Development" "工资"  7000  }
> db.emp.aggregate( {$project:{ "姓名" : "$ename" , "年龄" : "$age" , "部门" : "$department" , "工资" : "$salary" ,_id: 0 }},{$match:{ "工资" :{$gt: 6000 }}})
"姓名"  "robin" "年龄"  30 "部门"  "Sales" "工资"  8000  }
"姓名"  "jack" "年龄"  28 "部门"  "Development" "工资"  8000  }
"姓名"  "Mark" "年龄"  22 "部门"  "Development" "工资"  6500  }
"姓名"  "sarah" "年龄"  24 "部门"  "Development" "工资"  7000  }
>


Map Reduce

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

wKioL1esNYmx6ft6AAFH88WPAGE434.png

以下是MapReduce基本语法

>db.collection.mapReduce(

   function() {emit(key,value);},  //map 函数

   function(key,values) {return reduceFunction},   //reduce 函数

   {

      out: collection,

      query: document,

      sort: document,

      limit: number

   }

)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录key  value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

    map :映射函数 (生成键值对序列,作为 reduce 函数参数)

    reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。

    out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)

    query 一个筛选条件,只有满足条件的文档才会调用map函数。(querylimitsort可以随意组合)

    sort limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制

    limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
> db.emp.mapReduce(  function () { emit( this .department, 1 ); },  function (key,values) {  return  Array .sum(values) }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  3  }
"_id"  "HR" "value"  2  }
"_id"  "Planning" "value"  1  }
"_id"  "Sales" "value"  2  }
     利用内置的sum函数返回每个部门的人数
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .avg(values) }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  7166.666666666667  }
"_id"  "HR" "value"  5250  }
"_id"  "Planning" "value"  5000  }
"_id"  "Sales" "value"  7000  }
     利用内置的avg函数返回每个部门的工资平均数
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .avg(values).toFixed( 2 ) }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  "7166.67"  }
"_id"  "HR" "value"  "5250.00"  }
"_id"  "Planning" "value"  5000  }
"_id"  "Sales" "value"  "7000.00"  }
>    保留两位小数
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .sum(values) }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  21500  }
"_id"  "HR" "value"  10500  }
"_id"  "Planning" "value"  5000  }
"_id"  "Sales" "value"  14000  }
>  利用内置的sum函数返回每个部门的工资总和
> db.emp.mapReduce(  function () { emit( this .department,{count: 1 }); },  function (key,values) {  var  sum= 0 ; values.forEach( function (val){sum+=val.count});  return  sum; }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  3  }
"_id"  "HR" "value"  2  }
"_id"  "Planning" "value"  : {  "count"  1  } }
"_id"  "Sales" "value"  2  }
>  手工计算每个部门的员工总数
> db.emp.mapReduce(  function () { emit( this .department,{salct: this .salary,count: 1 }); },  function (key,values) {  var  res={salct: 0 ,sum: 0 }; values.forEach( function (val){res.sum+=val.count;res.salct+=val.salct});  return  res; }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  : {  "salct"  21500 "sum"  3  } }
"_id"  "HR" "value"  : {  "salct"  10500 "sum"  2  } }
"_id"  "Planning" "value"  : {  "salct"  5000 "count"  1  } }
"_id"  "Sales" "value"  : {  "salct"  14000 "sum"  2  } }
>  手工计算每个部门的员工总数和工资总数
> db.emp.mapReduce(  function () { emit( this .department,{salct: this .salary,count: 1 }); },  function (key,values) {  var  res={salct: 0 ,sum: 0 }; values.forEach( function (val){res.sum+=val.count;res.salct+=val.salct});  return  res.salct/res.sum; }, { out: "depart_summary"  } ).find()
"_id"  "Development" "value"  7166.666666666667  }
"_id"  "HR" "value"  5250  }
"_id"  "Planning" "value"  : {  "salct"  5000 "count"  1  } }
"_id"  "Sales" "value"  7000  }
>  手工计算每个部门的工资平均值
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .avg(values) }, { out: "depart_summary"  } ).find({value:{$gt: 5000 }})
"_id"  "Development" "value"  7166.666666666667  }
"_id"  "HR" "value"  5250  }
"_id"  "Sales" "value"  7000  }
     将分组计算后的值进行过滤显示,只显示工资平均数大于 5000 的部门
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .avg(values) }, { out: "depart_summary"  } ).find({value:{$gt: 5000 }}).sort({value: 1 })
"_id"  "HR" "value"  5250  }
"_id"  "Sales" "value"  7000  }
"_id"  "Development" "value"  7166.666666666667  }
      将分组计算后的值进行排序,默认为升序
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .avg(values) }, { out: "depart_summary"  } ).find({value:{$gt: 5000 }}).sort({value:- 1 })
"_id"  "Development" "value"  7166.666666666667  }
"_id"  "Sales" "value"  7000  }
"_id"  "HR" "value"  5250  }
>    将分组计算后的值进行排序,手工指定降序
> db.emp.mapReduce(  function () { emit( this .department, this .salary); },  function (key,values) {   return  Array .avg(values) }, { out: "depart_summary"  } ).find({value:{$gt: 5000 }}).sort({value:- 1 }).limit( 2 )
"_id"  "Development" "value"  7166.666666666667  }
"_id"  "Sales" "value"  7000  }
>    将分组计算后的值进行降序排序后,取其中的两个值 
> db.emp.mapReduce(  function () { emit( this .department,{count: 1 }); },  function (key,values) {  var  sum= 0 ; values.forEach( function (val){sum+=val.count});  return  sum; }, { out: "depart_summary" ,query:{age:{$gt: 25 }} } ).find()
"_id"  "Development" "value"  : {  "count"  1  } }
"_id"  "HR" "value"  : {  "count"  1  } }
"_id"  "Sales" "value"  : {  "count"  1  } }
>    分组前过滤数据,然后再分组计算
> db.emp.mapReduce(  function () { emit( this .department,{count: 1 }); },  function (key,values) {  var  sum= 0 ; values.forEach( function (val){sum+=val.count});  return  sum; }, { out: "depart_summary" ,query:{age:{$gt: 22 }},sort:{age: 1 } } ).find()
"_id"  "Development" "value"  2  }
"_id"  "HR" "value"  2  }
"_id"  "Planning" "value"  : {  "count"  1  } }
"_id"  "Sales" "value"  2  }
>   分组前过滤数据,并排序,然后再分组计算 (本示例无意义)



Group

基本语法如下:

    db.runCommand({group:{

        ns:集合名称,

        key:分组的键对象,

        initial:初始化累加器,

        $reduce:组分解器,

        condition:条件,

        finalize:组完成器}})

分组首先会按照key进行分组,每组的每个文档全要执行$reduce方法,该方法接收2 个参数:一个是组内本条记录,一个是累加器数据

实例:

按照部门分组,计算每个部门的工资总和,如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
> db.runCommand(
... {group:{ns: "emp" ,key:{ "department" : true },initial:{salct: 0 },
... $reduce: function (oriDoc,prev){ prev.salct+=oriDoc.salary}
... }}
... )
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  14000
},
{
"department"  "HR" ,
"salct"  10500
},
{
"department"  "Development" ,
"salct"  21500
},
{
"department"  "Planning" ,
"salct"  5000
}
],
"count"  : NumberLong( 8 ),
"keys"  : NumberLong( 4 ),
"ok"  1
}
> 统计每个部门的员工总量和工资总和,如下所示:
> db.runCommand( {group:{ns: "emp" ,key:{ "department" : true },initial:{salct: 0 ,count: 0 }, $reduce: function (oriDoc,prev){ prev.salct+=oriDoc.salary;prev.count+= 1 } }} )
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  14000 ,
"count"  2
},
{
"department"  "HR" ,
"salct"  10500 ,
"count"  2
},
{
"department"  "Development" ,
"salct"  21500 ,
"count"  3
},
{
"department"  "Planning" ,
"salct"  5000 ,
"count"  1
}
],
"count"  : NumberLong( 8 ),
"keys"  : NumberLong( 4 ),
"ok"  1
}
> 统计每个部门的员工总量、工资总和及平均值,如下所示:
> db.runCommand( {group:{ns: "emp" ,key:{ "department" : true },initial:{salct: 0 ,count: 0 ,avg: 0 }, $reduce: function (oriDoc,prev){ prev.salct+=oriDoc.salary;prev.count+= 1 ; prev.avg=(prev.salct/prev.count).toFixed( 2 ) } }} )
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  14000 ,
"count"  2 ,
"avg"  "7000.00"
},
{
"department"  "HR" ,
"salct"  10500 ,
"count"  2 ,
"avg"  "5250.00"
},
{
"department"  "Development" ,
"salct"  21500 ,
"count"  3 ,
"avg"  "7166.67"
},
{
"department"  "Planning" ,
"salct"  5000 ,
"count"  1 ,
"avg"  "5000.00"
}
],
"count"  : NumberLong( 8 ),
"keys"  : NumberLong( 4 ),
"ok"  1
}
> 统计每个部门的最高工资是多少,如下所示:
> db.runCommand( {group:{ns: "emp" ,key:{ "department" : true },initial:{salct: 0 }, $reduce: function (oriDoc,prev){  if (oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}} }} )
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  8000
},
{
"department"  "HR" ,
"salct"  6000
},
{
"department"  "Development" ,
"salct"  8000
},
{
"department"  "Planning" ,
"salct"  5000
}
],
"count"  : NumberLong( 8 ),
"keys"  : NumberLong( 4 ),
"ok"  1
}
> 统计每个部门的最高工资,并对结果过滤,只显示大于 5000 的部门,如下所示:
> db.runCommand( {group:{ns: "emp" ,key:{ "department" : true },initial:{salct: 0 }, $reduce: function (oriDoc,prev){  if (oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}},condition:{salary:{$gt: 5000 }} }} )
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  8000
},
{
"department"  "Development" ,
"salct"  8000
},
{
"department"  "HR" ,
"salct"  6000
}
],
"count"  : NumberLong( 6 ),
"keys"  : NumberLong( 3 ),
"ok"  1
}
> 将统计后的结果加上描述,如下所示:
> db.runCommand( {group:{ns: "emp" ,key:{ "department" : true },initial:{salct: 0 },
...  $reduce: function (oriDoc,prev){  if (oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}},
... condition:{salary:{$gt: 5000 }},
... finalize: function (prev){prev.salct= "Department of the highest salary is " +prev.salct}
... }})
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  "Department of the highest salary is 8000"
},
{
"department"  "Development" ,
"salct"  "Department of the highest salary is 8000"
},
{
"department"  "HR" ,
"salct"  "Department of the highest salary is 6000"
}
],
"count"  : NumberLong( 6 ),
"keys"  : NumberLong( 3 ),
"ok"  1
}
>
用函数格式化分组的键:如果集合中出现键Department和department同时存在,那么分组有点麻烦,解决方法如下:
> db.emp.insert({
...  "_id" : 9 , "ename" : "sophie" , "age" : 28 , "Department" : "HR" , "salary" : 18000
... })
WriteResult({  "nInserted"  1  })
> db.emp.find()
"_id"  1 "ename"  "tom" "age"  25 "department"  "Sales" "salary"  6000  }
"_id"  2 "ename"  "eric" "age"  24 "department"  "HR" "salary"  4500  }
"_id"  3 "ename"  "robin" "age"  30 "department"  "Sales" "salary"  8000  }
"_id"  4 "ename"  "jack" "age"  28 "department"  "Development" "salary"  8000  }
"_id"  5 "ename"  "Mark" "age"  22 "department"  "Development" "salary"  6500  }
"_id"  6 "ename"  "marry" "age"  23 "department"  "Planning" "salary"  5000  }
"_id"  7 "ename"  "hellen" "age"  32 "department"  "HR" "salary"  6000  }
"_id"  8 "ename"  "sarah" "age"  24 "department"  "Development" "salary"  7000  }
"_id"  9 "ename"  "sophie" "age"  28 "Department"  "HR" "salary"  18000  }
>
> db.runCommand( {group:{ns: "emp" ,
... $keyf: function (oriDoc){ if (oriDoc.Department){ return {department:oriDoc.Department}} else { return {department:oriDoc.department}}},
... initial:{salct: 0 },
... $reduce: function (oriDoc,prev){  if (oriDoc.salary>prev.salct){prev.salct=oriDoc.salary}},
... condition:{salary:{$gt: 5000 }},
... finalize: function (prev){prev.salct= "Department of the highest salary is " +prev.salct}
... }} )
{
"waitedMS"  : NumberLong( 0 ),
"retval"  : [
{
"department"  "Sales" ,
"salct"  "Department of the highest salary is 8000"
},
{
"department"  "Development" ,
"salct"  "Department of the highest salary is 8000"
},
{
"department"  "HR" ,
"salct"  "Department of the highest salary is 18000"
}
],
"count"  : NumberLong( 7 ),
"keys"  : NumberLong( 3 ),
"ok"  1
}
>









本文转自 meteor_hy 51CTO博客,原文链接:http://blog.51cto.com/caiyuanji/1836526,如需转载请自行联系原作者
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
1月前
|
存储 分布式计算 NoSQL
MongoDB Map Reduce
10月更文挑战第23天
27 1
|
SQL NoSQL Unix
13 MongoDB高级 - 聚合 aggregate
13 MongoDB高级 - 聚合 aggregate
75 0
|
SQL NoSQL Unix
MongoDB 聚合aggregate
MongoDB 聚合aggregate
142 0
|
分布式计算 NoSQL JavaScript
初识Mongodb之MapReduce操作篇
初识Mongodb之MapReduce操作篇
402 0
初识Mongodb之MapReduce操作篇
|
NoSQL 大数据 MongoDB
MongoDB 中Aggregate使用与相关限制
MongoDB 中Aggregate使用与相关限制
266 0
MongoDB 中Aggregate使用与相关限制
|
NoSQL MongoDB
MongoDB aggregate聚合分组查询
MongoDB aggregate聚合分组查询
310 0
下一篇
DataWorks