【OpenCV学习】LK算法特征点运动跟踪(图片)

简介: 作者:gnuhpc 出处:http://www.cnblogs.com/gnuhpc/ #include #include #include #include const int MAX_CORNERS = 500; int main(int argc, char**...

作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/

#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <stdio.h>

const int MAX_CORNERS = 500;
int main(int argc, char** argv) {
// Initialize, load two images from the file system, and
// allocate the images and other structures we will need for
// results.
//
IplImage* imgA = cvLoadImage("OpticalFlow0.jpg",CV_LOAD_IMAGE_GRAYSCALE);
IplImage* imgB = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_GRAYSCALE);
CvSize img_sz = cvGetSize( imgA );
int win_size = 10;
IplImage* imgC = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_UNCHANGED);

// The first thing we need to do is get the features
// we want to track.
//
IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 );
int corner_count = MAX_CORNERS;
CvPoint2D32f* cornersA = new CvPoint2D32f[ MAX_CORNERS ];
cvGoodFeaturesToTrack(
imgA,//the input image
eig_image,//temp image whose result is meaningful
tmp_image,//temp image
cornersA,//contains the result points
&corner_count,//the maximum number of points
0.01,//indicates the minimal acceptable lower eigenvalue for a point to be included as a corner
5.0,//guarantees that no two returned points are within the indicated number of pixels.
0,//no mask is used
3,// the region around a given pixel that is considered when computing the autocorrelation matrix of derivatives.
0,//use the the Shi-Tomasi deinition
0.04
);
/* Further find more accurate points */
cvFindCornerSubPix(
imgA,
cornersA,
corner_count,
cvSize(win_size,win_size),
cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03)
);
// Call the Lucas Kanade algorithm
//
char features_found[ MAX_CORNERS ];
float feature_errors[ MAX_CORNERS ];
CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 );
IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 );
CvPoint2D32f* cornersB = new CvPoint2D32f[ MAX_CORNERS ];
cvCalcOpticalFlowPyrLK(
imgA,
imgB,
pyrA,
pyrB,
cornersA,
cornersB,
corner_count,
cvSize( win_size,win_size ),
5,
features_found,
feature_errors,
cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ),
0
);
// Now make some image of what we are looking at:
//
for( int i=0; i<corner_count; i++ ) {
if( features_found[i]==0|| feature_errors[i]>550 ) {
// printf("Error is %f/n",feature_errors[i]);
continue;
}
// printf("Got it/n");
CvPoint p0 = cvPoint(
cvRound( cornersA[i].x ),
cvRound( cornersA[i].y )
);
CvPoint p1 = cvPoint(
cvRound( cornersB[i].x ),
cvRound( cornersB[i].y )
);
cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 );
}
cvNamedWindow("ImageA",0);
cvNamedWindow("ImageB",0);
cvNamedWindow("LKpyr_OpticalFlow",0);
cvSaveImage("result_LK.jpg",imgC);
cvShowImage("ImageA",imgA);
cvShowImage("ImageB",imgB);
cvShowImage("LKpyr_OpticalFlow",imgC);
cvWaitKey(0);
return 0;
}

clip_image002[4]clip_image004[4]
result:
clip_image006

作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/


               作者:gnuhpc
               出处:http://www.cnblogs.com/gnuhpc/
               除非另有声明,本网站采用知识共享“署名 2.5 中国大陆”许可协议授权。


分享到:

目录
相关文章
|
2月前
|
传感器 算法
船舶运动控制,PID控制算法,反步积分控制器
船舶运动控制,PID控制算法,反步积分控制器
|
3月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
150 0
|
2月前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
192 1
|
3月前
|
机器学习/深度学习 传感器 数据采集
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
【23年新算法】基于鱼鹰算法OOA-Transformer-BiLSTM多特征分类预测附Matlab代码 (多输入单输出)(Matlab代码实现)
302 0
|
4月前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
6月前
|
机器学习/深度学习 存储 监控
上网管理监控软件的 Go 语言流量特征识别算法实现与优化
本文探讨基于Go语言的流量特征识别算法,用于上网管理监控软件。核心内容涵盖AC自动机算法原理、实现及优化,通过路径压缩、哈希表存储和节点合并策略提升性能。实验表明,优化后算法内存占用降低30%,匹配速度提升20%。在1000Mbps流量下,CPU利用率低于10%,内存占用约50MB,检测准确率达99.8%。未来可进一步优化高速网络处理能力和融合机器学习技术。
193 10
|
8月前
|
算法 数据可视化 开发者
为什么要学习数据结构与算法
今天,我向大家介绍一门非常重要的课程——《数据结构与算法》。这门课不仅是计算机学科的核心,更是每一位开发者从“小白”迈向“高手”的必经之路。
为什么要学习数据结构与算法
|
10月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
2191 11
架构学习:7种负载均衡算法策略
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
182 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
140 2

热门文章

最新文章