Linux下的Hadoop--分布式模式的部署

简介:

文章转自:http://hi.baidu.com/lvmajia/blog/item/34239486e58ffe3466096eea.html

Linux下的Hadoop--分布式模式的部署

 

  选用软件版本:

1. jdk 1.6.0.10
2. hadoop-0.19.1

1. 准备Host环境和配置ssh

主节点IP是192.168.1.247,子节点1是192.168.1.36,修改两个节点的/etc/hosts文件:

# /etc/hosts (for master AND slave)
192.168.1.247 master
192.168.1.36 slave

分别在两台机器上添加用户hadoop

  ①在master上:

groupadd -g 2000 hadoop
useradd -u 2000 -g hadoop hadoop
su - hadoop
ssh-keygen -t dsa -P '' -f ~/.ssh/identity

Generating public/private dsa key pair.
Created directory '/home/hadoop/.ssh'.
Your identification has been saved in /home/hadoop/.ssh/identity.
Your public key has been saved in /home/hadoop/.ssh/identity.pub.
The key fingerprint is:
44:e5:05:16:a2:33:95:23:3e:54:f8:c7:f1:e5:bc:24 hadoop@localhost.localdomain

mv .ssh/identity.pub .ssh/authorized_keys

ssh master输入yes接受自己的公钥,看能否自动登录,然后
ssh slave输入yes接受36的公钥。

The authenticity of host 'slave (192.168.1.36)' can't be established.
RSA key fingerprint is 40:39:05:3d:3e:6c:9d:1f:8c:d1:40:68:67:65:86:41.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'slave,192.168.1.36' (RSA) to the list of known hosts.
hadoop@slave's password:

cat .ssh/authorized_keys
ssh-dss AAAAB3NzaC1kc3MAAACBAM4FxFo0oXwj04yyOYQsFe4IeNU/ClXOVxXtTQyQlZHse/Cl9tzKzz
rDxfKkM8K/wjRH3o2gppk2L2VO7SAd8ZYarCKQzCQjQzMa7UcsjQBth9bzde/rafDO2izHyN5d
M9oHMD3p4H9f672pPO0n8oYShrA48ndBn0N8TucrT0t9AAAAFQCy+pU9QOOD4lvp/qipQbJI2J
X7kQAAAIB4lwMLhjcJmtTiQqxUruTm4WgdOhlVz9HJPqv1FipZEhAVIk5xG9X93wUee3zVN+6v
2mOuJlXAiOAbFeY5ba7EgSaL8RAAhUhzFiTNar6jtZJgy36TzOoECL99leX+F9EpYnCyN7zMHj
uOE5nFPV6NgsDJDjt2EPEdoEvyeMz3iAAAAIEAsoGk1TxRN12zq5HjFsPUiwVCKKoi4NKlwCHz
UGNwE875je1ZHOm32SNUzpfwKGT8PR+d530aVzUGTmT7On5mUlD5ZIHPgjn9zXPFZ/ZMV9XAox
hHBNbkCrQlwLgEE7C3nK3xlEGLymdLxGRZpiCctdlromNqNhr33mzJnWWnVPI= hadoop@localhost.localdomain

复制备用

  ②在slave上:

groupadd -g 2000 hadoop
useradd -u 2000 -g hadoop hadoop
su - hadoop
mkdir .ssh
chmod 700 .ssh
vi .ssh/authorized_keys

把从master机器上拷贝的authorized_keys文件内容粘贴上。
chmod 644 .ssh/authorized_keys

  ③在master上:

ssh slave 看是否能自动登录

  这样host和ssh环境就配好了。

  有人会觉得slave上的操作很麻烦,这是因为这里只添加了用户,而没有给用户密码,这样导致hadoop用户只能用证书登陆,不能用密码方式登录,会更安全。

2. 配置hadoop和jdk1.6
这里下载的jdk是jdk-6u10-rc-bin-b28-linux-i586-21_jul_2008.bin;执行后安装到/usr/java/jdk1.6.0_10

  ①在master上:

su - hadoop
wget http://apache.freelamp.com/hadoop/core/hadoop-0.19.1/hadoop-0.19.1.tar.gz
tar zxvf hadoop-0.19.1.tar.gz
cd hadoop-0.19.1
vi conf/masters

# 把其中的localhost改成master
master
vi conf/slaves
# 把其中的localhost改成两个节点,如果要布两台以上,就依次把剩下的子节点加上。
master
slave

vi conf/hadoop-env.sh
#在文件最前面加两行
export JAVA_HOME=/usr/java/jdk1.6.0_10
export PATH=$JAVA_HOME/bin:$PATH

vi conf/hadoop-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>master:9001</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>

# 格式化namenode
bin/hadoop namenode -format
09/05/18 14:34:02 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = localhost.localdomain/127.0.0.1
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 0.19.1
STARTUP_MSG: build = https://svn.apache.org/repos/asf/hadoop/core/branches/branch-0.19 -r 745977; compiled by 'ndaley' on Fri Feb 20 00:16:34 UTC 2009
************************************************************/
09/05/18 14:34:02 INFO namenode.FSNamesystem: fsOwner=hadoop,hadoop
09/05/18 14:34:02 INFO namenode.FSNamesystem: supergroup=supergroup
09/05/18 14:34:02 INFO namenode.FSNamesystem: isPermissionEnabled=true
09/05/18 14:34:02 INFO common.Storage: Image file of size 96 saved in 0 seconds.
09/05/18 14:34:02 INFO common.Storage: Storage directory /tmp/hadoop-hadoop/dfs/name has been successfully formatted.
09/05/18 14:34:02 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at localhost.localdomain/127.0.0.1
************************************************************/

  ②在slave上:

vi conf/hadoop-env.sh
在文件最前面加两行
export JAVA_HOME=/usr/java/jdk1.6.0_10
export PATH=$JAVA_HOME/bin:$PATH

vi conf/hadoop-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>mapred.job.tracker</name>
<value>master:9001</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>

  ③在master上:

bin/start-all.sh
starting namenode, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-namenode-localhost.localdomain.out
master: starting datanode, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-datanode-localhost.localdomain.out
slave: starting datanode, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-datanode-wangyin3.out
master: starting secondarynamenode, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-secondarynamenode-localhost.localdomain.out
starting jobtracker, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-jobtracker-localhost.localdomain.out
slave: starting tasktracker, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-tasktracker-wangyin3.out
master: starting tasktracker, logging to /home/hadoop/hadoop-0.19.1/bin/../logs/hadoop-hadoop-tasktracker-localhost.localdomain.out

export JAVA_HOME=/usr/java/jdk1.6.0_10
export PATH=$JAVA_HOME/bin:$PATH
jps

9208 SecondaryNameNode
9426 TaskTracker
8995 NameNode
9302 JobTracker
9095 DataNode
9536 Jps

看到运行了5个进程,OK
④在slave上:

export JAVA_HOME=/usr/java/jdk1.6.0_10
export PATH=$JAVA_HOME/bin:$PATH
jps

30693 DataNode
30768 TaskTracker
30814 Jps

看到运行了2个进程,Ok

4. 运行hadoop

  拷贝conf目录到hdfs文件系统中
 

$ bin/hadoop dfs -copyFromLocal conf 111

  查看一下是否已经拷过去了
bin/hadoop dfs -ls
Found 1 items
drwxr-xr-x - hadoop supergroup 0 2009-05-18 15:27 /user/hadoop/111

  在伪分布系统上运行MapReduce,wordcount
bin/hadoop jar hadoop-0.19.1-examples.jar wordcount 111 111-out
09/05/14 10:08:19 INFO mapred.FileInputFormat: Total input paths to process : 12
09/05/14 10:08:21 INFO mapred.JobClient: Running job: job_200905181001_0002
09/05/14 10:08:22 INFO mapred.JobClient: map 0% reduce 0%
09/05/14 10:08:48 INFO mapred.JobClient: map 7% reduce 0%
09/05/14 10:08:54 INFO mapred.JobClient: map 15% reduce 0%
09/05/14 10:09:06 INFO mapred.JobClient: map 15% reduce 5%
09/05/14 10:09:12 INFO mapred.JobClient: map 23% reduce 5%
09/05/14 10:09:13 INFO mapred.JobClient: map 30% reduce 5%
09/05/14 10:09:25 INFO mapred.JobClient: map 38% reduce 10%
09/05/14 10:09:27 INFO mapred.JobClient: map 46% reduce 10%
09/05/14 10:09:35 INFO mapred.JobClient: map 53% reduce 15%
09/05/14 10:09:40 INFO mapred.JobClient: map 61% reduce 15%
09/05/14 10:09:45 INFO mapred.JobClient: map 69% reduce 15%
09/05/14 10:09:50 INFO mapred.JobClient: map 76% reduce 20%
09/05/14 10:09:57 INFO mapred.JobClient: map 84% reduce 20%
09/05/14 10:10:01 INFO mapred.JobClient: map 92% reduce 20%
09/05/14 10:10:06 INFO mapred.JobClient: map 100% reduce 28%
09/05/14 10:10:11 INFO mapred.JobClient: map 100% reduce 30%
09/05/14 10:10:14 INFO mapred.JobClient: map 100% reduce 100%
09/05/14 10:10:20 INFO mapred.JobClient: Job complete: job_200905181001_0002
09/05/14 10:10:20 INFO mapred.JobClient: Counters: 16
09/05/14 10:10:20 INFO mapred.JobClient: File Systems
09/05/14 10:10:20 INFO mapred.JobClient: HDFS bytes read=64223
09/05/14 10:10:20 INFO mapred.JobClient: HDFS bytes written=30615
09/05/14 10:10:20 INFO mapred.JobClient: Local bytes read=47194
09/05/14 10:10:20 INFO mapred.JobClient: Local bytes written=94824
09/05/14 10:10:20 INFO mapred.JobClient: Job Counters
09/05/14 10:10:20 INFO mapred.JobClient: Launched reduce tasks=1
09/05/14 10:10:20 INFO mapred.JobClient: Launched map tasks=13
09/05/14 10:10:20 INFO mapred.JobClient: Data-local map tasks=13
09/05/14 10:10:20 INFO mapred.JobClient: Map-Reduce Framework
09/05/14 10:10:20 INFO mapred.JobClient: Reduce input groups=1780
09/05/14 10:10:20 INFO mapred.JobClient: Combine output records=2425
09/05/14 10:10:20 INFO mapred.JobClient: Map input records=1939
09/05/14 10:10:20 INFO mapred.JobClient: Reduce output records=1780
09/05/14 10:10:20 INFO mapred.JobClient: Map output bytes=84749
09/05/14 10:10:20 INFO mapred.JobClient: Map input bytes=62908
09/05/14 10:10:20 INFO mapred.JobClient: Combine input records=6370
09/05/14 10:10:20 INFO mapred.JobClient: Map output records=6370
09/05/14 10:10:20 INFO mapred.JobClient: Reduce input records=2425

  OK,一切搞定了。


 

本文转自holy2009 51CTO博客,原文链接:http://blog.51cto.com/holy2010/410301


相关文章
|
9月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
3145 57
|
12月前
|
Java 关系型数据库 MySQL
新一代 Cron-Job分布式任务调度平台 部署指南
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
405 106
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
605 6
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
351 2
|
10月前
|
SQL 数据可视化 网络安全
YashanDB分布式可视化部署
本文介绍YashanDB的分布式部署流程,涵盖服务端安装、数据库基本信息与服务器配置、节点信息设置、建库参数调整、环境变量配置及安装结果检查等步骤。通过可视化Web界面操作,详细说明了各环节配置方法和注意事项,确保用户顺利完成数据库集群的搭建与初始化设置。适用于需要分布式数据库部署的场景,提供全面的操作指导。
YashanDB分布式可视化部署
|
11月前
|
运维 Kubernetes Java
Koupleless 助力「人力家」实现分布式研发集中式部署,又快又省!
本文由仁励家网络科技(杭州)有限公司架构师赵云兴、葛志刚撰写,探讨了公司在优化HR SaaS解决方案时遇到的系统资源浪费和运维成本高的问题。通过引入Koupleless框架,成功将模块体积从500M缩减至5M以下,部署时间从6分钟缩短至3分钟,并大幅节省服务器资源。文章详细介绍了Koupleless的部署方案及优化措施,感谢Koupleless团队的专业支持,使人力家实现了多应用合并部署,降低了运维成本。
Koupleless 助力「人力家」实现分布式研发集中式部署,又快又省!
|
11月前
|
运维 Kubernetes Java
Koupleless 助力「人力家」实现分布式研发集中式部署,又快又省!
通过引入Koupleless框架,解决了多应用部署中资源浪费和运维成本高的问题,实现了模块瘦身、快速部署及流量控制优化,大幅降低了服务器资源占用和发布耗时,提升了系统稳定性和运维效率。最终,人力家成功实现了多应用的轻量集中部署,显著减少了运维成本。
 Koupleless 助力「人力家」实现分布式研发集中式部署,又快又省!
|
12月前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
687 5
|
12月前
|
SQL 数据建模 BI
【YashanDB 知识库】用 yasldr 配置 Bulkload 模式作单线程迁移 300G 的业务数据到分布式数据库,迁移任务频繁出错
问题描述 详细版本:YashanDB Server Enterprise Edition Release 23.2.4.100 x86_64 6db1237 影响范围: 离线数据迁移场景,影响业务数据入库。 外场将部分 NewCIS 的报表业务放到分布式数据库,验证 SQL 性能水平。 操作系统环境配置: 125G 内存 32C CPU 2T 的 HDD 磁盘 问题出现的步骤/操作: 1、部署崖山分布式数据库 1mm 1cn 3dn 单线启动 yasldr 数据迁移任务,设置 32 线程的 bulk load 模式 2、观察 yasldr.log 是否出现如下错