海量数据处理利器greenplum——初识

简介: 简介及适用场景 如果想在数据仓库中快速查询结果,可以使用greenplum。 Greenplum数据库也简称GPDB。它拥有丰富的特性: 第一,完善的标准支持:GPDB完全支持ANSI SQL 2008标准和SQL OLAP 2003 扩展;从应用编程接口上讲,它支持ODBC和JDBC。

简介及适用场景

如果想在数据仓库中快速查询结果,可以使用greenplum。

Greenplum数据库也简称GPDB。它拥有丰富的特性:

第一,完善的标准支持:GPDB完全支持ANSI SQL 2008标准和SQL OLAP 2003 扩展;从应用编程接口上讲,它支持ODBC和JDBC。完善的标准支持使得系统开发、维护和管理都大为方便。而现在的 NoSQL,NewSQL和Hadoop 对 SQL 的支持都不完善,不同的系统需要单独开发和管理,且移植性不好。

第二,支持分布式事务,支持ACID。保证数据的强一致性。

第三,做为分布式数据库,拥有良好的线性扩展能力。在国内外用户生产环境中,具有上百个物理节点的GPDB集群都有很多案例。

第四,GPDB是企业级数据库产品,全球有上千个集群在不同客户的生产环境运行。这些集群为全球很多大的金融、政府、物流、零售等公司的关键业务提供服务。

第五,GPDB是Greenplum(现在的Pivotal)公司十多年研发投入的结果。GPDB基于PostgreSQL 8.2,PostgreSQL 8.2有大约80万行源代码,而GPDB现在有130万行源码。相比PostgreSQL 8.2,增加了约50万行的源代码。

第六,Greenplum有很多合作伙伴,GPDB有完善的生态系统,可以与很多企业级产品集成,譬如SAS,Cognos,Informatic,Tableau等;也可以很多种开源软件集成,譬如Pentaho,Talend 等。

greenplum起源

Greenplum最早是在10多年前(大约在2002年)出现的,基本上和Hadoop是同一时期(Hadoop 约是2004年前后,早期的Nutch可追溯到2002年)。当时的背景是:

  • 互联网行业经过之前近10年的由慢到快的发展,累积了大量信息和数据,数据在爆发式增长,这些海量数据急需新的计算方式,需要一场计算方式的革命;
  • 传统的主机计算模式在海量数据面前,除了造价昂贵外,在技术上也难于满足数据计算性能指标,传统主机的Scale-up模式遇到了瓶颈,SMP(对称多处理)架构难于扩展,并且在CPU计算和IO吞吐上不能满足海量数据的计算需求;
  • 分布式存储和分布式计算理论刚刚被提出来,Google的两篇著名论文发表后引起业界的关注,一篇是关于GFS分布式文件系统,另外一篇是关于MapReduce 并行计算框架的理论,分布式计算模式在互联网行业特别是收索引擎和分词检索等方面获得了巨大成功。

下图就是GFS的架构

image

总体架构

greenplum的总体架构如下:

image

  数据库由Master Severs和Segment Severs通过Interconnect互联组成。

Master主机负责:建立与客户端的连接和管理;SQL的解析并形成执行计划;执行计划向Segment的分发收集Segment的执行结果;Master不存储业务数据,只存储数据字典。 

Segment主机负责:业务数据的存储和存取;用户查询SQL的执行。

  greenplum使用mpp架构。

image

    基本体系架构

image

master节点,可以做成高可用的架构

image

master node高可用,类似于hadoop的namenode和second namenode,实现主备的高可用。

image

segments节点

image

并行管理

对于数据的装载和性能监控。

image

并行备份和恢复。

image

数据访问流程,数据分布到不同颜色的节点上

image

查询流程分为查询创建和查询分发,计算后将结果返回。

image

对于存储,将存储的内容分布到各个结点上。

image

对于数据的分布,分为hash分布和随机分布两种。

image

均匀分布的情况:

image

总结

GPDB从开始设计的时候就被定义成数据仓库,如果是olap的应用,可以尝试使用GPDB。

目录
相关文章
|
4月前
|
缓存 前端开发 JavaScript
Rails应用慢如蜗牛?揭开数据库到前端的全方位性能优化秘籍,从此告别龟速加载!
【8月更文挑战第31天】本文探讨了Ruby on Rails应用的性能优化方法,涵盖数据库查询与前端渲染。通过具体代码示例,介绍了如何使用`includes`避免N+1查询问题,利用缓存机制提高效率,以及通过合并和压缩CSS及JavaScript文件优化前端渲染。这些技巧有助于全面提升应用性能和用户体验。
57 1
|
7月前
|
存储 SQL 关系型数据库
掌握高性能SQL的34个秘诀🚀多维度优化与全方位指南
掌握高性能SQL的34个秘诀🚀多维度优化与全方位指南
|
存储 关系型数据库 MySQL
MySQL索引探秘:加速数据检索的必备利器
MySQL索引探秘:加速数据检索的必备利器
273 0
|
安全 测试技术 API
Goby+Acunetix打造漏扫利器
Goby+Acunetix打造漏扫利器
868 0
|
关系型数据库 数据库
传统关系型数据库性能优化全攻略(中)
传统关系型数据库性能优化全攻略(中)
126 0
传统关系型数据库性能优化全攻略(中)
|
SQL NoSQL 搜索推荐
传统关系型数据库性能优化全攻略(上)
传统关系型数据库性能优化全攻略(上)
251 0
传统关系型数据库性能优化全攻略(上)
|
关系型数据库 MySQL 索引
传统关系型数据库性能优化全攻略(下)
传统关系型数据库性能优化全攻略(下)
139 0
传统关系型数据库性能优化全攻略(下)
|
Docker 容器
静态代码检查新利器
静态代码检查新利器
667 0
静态代码检查新利器
|
缓存 Java
性能诊断利器 JProfiler 快速入门和最佳实践
性能诊断是软件工程师在日常工作中需要经常面对和解决的问题,在用户体验至上的今天,解决好应用的性能问题能带来非常大的收益。Java 作为最流行的编程语言之一,其应用性能诊断一直受到业界广泛关注。可能造成 Java 应用出现性能问题的因素非常多,例如线程控制、磁盘读写、数据库访问、网络I/O、垃圾收集等。
5506 1
|
SQL
化繁为简——分解复杂的SQL语句
今天同事咨询一个SQL语句,如下所示,SQL语句本身并不复杂,但是执行效率非常糟糕,糟糕到一塌糊涂(执行计划也是相当复杂)。如果查询条件中没有NOT EXISTS部分,倒是不要一秒就能查询出来。 SELECT * FROM dbo.
1190 0