HouseMenu在DNN 4.6中无法正常工作。

简介: 发现HouseMenu在DNN 4.6中无法正常工作,表现为:CSS没有加载 设置Scop="-1"(从根页面开始显示菜单),IsRecursive="True"(显示所有子页面),但Home页面下的所有子页面无论怎样都不显示,这应该是DNN API在高版本中改变引起的问题。
发现HouseMenu在DNN 4.6中无法正常工作,表现为:
  • CSS没有加载
  • 设置Scop="-1"(从根页面开始显示菜单),IsRecursive="True"(显示所有子页面),但Home页面下的所有子页面无论怎样都不显示,这应该是DNN API在高版本中改变引起的问题。

相关文章
|
6月前
|
计算机视觉
【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)
【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)
133 0
【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)
|
4月前
|
机器学习/深度学习 算法 网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
WK
|
2月前
|
机器学习/深度学习 监控 算法
反向传播算法是如何工作的
反向传播算法通过最小化损失函数优化神经网络。首先,输入数据经由前向传播得到预测结果,并计算损失;接着,反向传播计算各参数的梯度,并利用梯度下降法更新权重和偏置。这一过程反复进行,直至满足停止条件。算法具备高效性、灵活性及可扩展性,能处理复杂模式识别与预测任务,适用于不同类型与规模的神经网络,显著提升了模型的预测准确性和泛化能力。
WK
41 3
|
3月前
|
机器学习/深度学习
DNN构建网络
【8月更文挑战第9天】DNN构建网络。
26 3
|
6月前
|
机器学习/深度学习 算法
大模型开发:描述集成学习以及它如何工作。
【4月更文挑战第24天】集成学习通过结合多个模型预测提升整体性能,减少偏差和方差。主要分为Bagging和Boosting两类。Bagging中,模型并行在数据子集上训练,如随机森林,通过投票或平均聚合预测。Boosting则顺序训练模型,聚焦纠正前一个模型的错误,如AdaBoost,加权组合所有模型预测。Stacking则是用基础模型的输出训练新模型。关键在于模型多样性以捕捉数据不同模式。集成学习广泛应用于分类、回归等任务,能提高泛化能力,降低过拟合风险。
47 3
|
6月前
|
机器学习/深度学习 算法
大模型开发:解释反向传播算法是如何工作的。
反向传播算法是训练神经网络的常用方法,尤其适用于多层前馈网络。它包括前向传播、计算损失、反向传播和迭代过程。首先,输入数据通过网络层层传递至输出层,计算预测值。接着,比较实际输出与期望值,计算损失。然后,从输出层开始,利用链式法则反向计算误差和权重的梯度。通过梯度下降等优化算法更新权重和偏置,以降低损失。此过程反复进行,直到损失收敛或达到预设训练轮数,优化模型性能,实现对新数据的良好泛化。
206 4
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV1(附代码+修改教程)
YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV1(附代码+修改教程)
168 1
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV2(附代码+修改教程)
YOLOv8改进 | 主干篇 | 轻量级网络ShuffleNetV2(附代码+修改教程)
422 0
|
机器学习/深度学习
LeNet讲解以及搭建训练过程
LeNet讲解以及搭建训练过程
|
机器学习/深度学习 存储 人工智能
ICLR 2023 Spotlight|节省95%训练开销,清华黄隆波团队提出强化学习专用稀疏训练框架RLx2
ICLR 2023 Spotlight|节省95%训练开销,清华黄隆波团队提出强化学习专用稀疏训练框架RLx2
181 0