PgSQL · 特性分析 · Plan Hint

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 背景 有一个功能,是社区官方版”永远”不考虑引入的(参见PG TODO,查找”Oracle-style”),即类似Oracle的Plan Hint。社区开发者的理念是,引入Hint功能,会掩盖优化器本身的问题,导致缺陷不被暴露出来。但对于我们的使用者来讲,遇到某些SQL的查询计划不好,性能出了问题

背景

有一个功能,是社区官方版”永远”不考虑引入的(参见PG TODO,查找”Oracle-style”),即类似Oracle的Plan Hint。社区开发者的理念是,引入Hint功能,会掩盖优化器本身的问题,导致缺陷不被暴露出来。但对于我们的使用者来讲,遇到某些SQL的查询计划不好,性能出了问题,使用了其他方法又不奏效的情况下,首先的目标还是想尽快解决问题,而Hint就可以在这种时候帮助到我们。可喜的是,通过集成“民间”的 pg_hint_plan 插件(文档),RDS for PG已经支持了Hint功能(RDS for PPAS也是支持的)。现在我们来研究一下这个插件如何使用,又是如何做到改变优化器优化过程,让优化器听我们“指挥”的。

使用

Plan Hint在RDS for PG里面缺省是没有打开的,可以LOAD命令启用:

postgres=# LOAD 'pg_hint_plan';
LOAD

但注意这只在会话级别有效,重新连接后将失效。如果想要每次连接都自动启用Hint,可以使用下面的命令(注意必须以RDS的根用户执行,否则会遇到权限错误)。这样下次连接时,Hint就默认启用了。

postgres=> alter role all set session_preload_libraries = 'pg_hint_plan';
ALTER ROLE

为了便于说明,我们使用下面的shell脚本来创建2张表:

for i in `seq 2` ; do

  psql -c "drop table t${i}"
  psql -c "create table t${i}(a int, b int);"
  psql -c "insert into t${i} select generate_series(1,1000), random() *1000+1"
  psql -c "create index t${i}_i_a on t${i}(a)"
  psql -c "create index t${i}_i_b on t${i}(b)"

done

然后在t1上进行查询,不使用和使用Hint的查询计划分别如下:

postgres=> explain select * from t1 where a = 1;
                           QUERY PLAN
-----------------------------------------------------------------
 Index Scan using t1_i_a on t1  (cost=0.28..8.29 rows=1 width=8)
   Index Cond: (a = 1)
(2 rows)

postgres=> /*+ SeqScan(t1) */ explain select * from t1 where a = 1;
                    QUERY PLAN
---------------------------------------------------
 Seq Scan on t1  (cost=0.00..17.50 rows=1 width=8)
   Filter: (a = 1)
(2 rows)

可以看出,利用Hint后,我们成功强制使用了表扫描。Hint一般以SQL注释的形式,出现在SQL的前面,并以/+开头,以/结尾。注意/*和+之间不能有空格。

Hint的种类

pg_hint_plan插件支持的Hint有很多种,分成如下几类(具体参见pg_hint_plan文档):

扫描类(Scan Method),指定表的访问路径,举例如下:

--顺序扫描,参数为表名,也可以带模式名
SeqScan(t1)
--索引扫描,参数为表名和索引名,注意两者之间是空格,没有逗号
IndexScan(t1 t1_i_a)
--TID扫描
TidScan(t1)
--禁止顺序扫描
NoSeqScan(t1)
--禁止索引扫描
NoIndexScan(t1)

连接类(Join Method),指定表连接的方法,举例如下:

NestLoop(t1 t2)
MergeJoin(t1 t2)
HashJoin(t1 t2)

连接顺序类(Join Order),指定连接的顺序,举例如下:
--使t3和t1先连接,最后和t2连接
Leading(t2 (t3 t1))


SET类,即改变任意的GUC变量,举例如下:
--改变random_page_cost
Set(random_page_cost 3.0)

ROW类型,改变表的连接结果集的估计大小,举例如下:
--将t1和t2的连接结果的估计大小扩大10倍
Rows(t1 t2 *10)

内核实现

看完了形形色色的Hint,我们会想,这些Hint是怎么改变复杂的优化器逻辑,使其生成我们需要的查询计划的呢?我们从其源码看起(源码可以从这里下载)。

插件主要的代码集中在pg_hint_plan.c里面。从其中PG_init函数的代码可以看出,它利用了planner_hook(优化器的函数钩子,实际上是全局变量,存放函数地址,可以被插件更改,换成插件自定义函数的地址),用pg_hint_plan_planner取代了原来的优化器逻辑。这样PG在处理一个SQL时,将调用pg_hint_plan_planner来做优化。而pg_hint_plan_planner会调用get_hints_from_comment,来读取Hint,并调用create_hintstate进行语法分析。这里要说明的是,create_hintstate遇到一张表上的多个同类型Hint(包括重复的Hint),只保留最后一个,前面的会忽略。

另外,还有两个函数钩子被利用:get_relation_info_hook 和 join_search_hook。这两个钩子分别被修改指向了pg_hint_plan_get_relation_infopg_hint_plan_join_search。前者是在优化器处理基本表(非视图、非函数的表)获取表信息时被调用,调用栈如下:

query_planner -> add_base_rels_to_query -> build_simple_rel -> get_relation_info -> get_relation_info_hook(即pg_hint_plan_get_relation_info)

这个pg_hint_plan_get_relation_info做了什么呢?仔细看会惊讶的发现,它是用来删除索引的!对,它在优化器获取表的基本信息后被调用,然后其从基本信息删除了那些在Hint中未使用的索引。例如,t1上有两个索引t1_i_a和t1_i_b,如果指定了IndexScan(t1 t_i_b)这个Hint,那么t1_i_a的索引信息在这里被删除,这样在后续的优化中,就永远不会考虑t1_i_a这个索引了!

再看pg_hint_plan_join_search,其被调用的位置如下:

query_planner -> make_one_rel -> make_rel_from_joinlist ->join_search_hook(即pg_hint_plan_join_search)

可见,它是在为一个SQL语句生成连接结果时被调用,其输入为待连接的表,输出为连接后生成的表及其最优的查询计划。它主要做了两件事:

  1. 调用rebuild_scan_path重新生成基本表的访问路径。为什么要重新生成呢?因为在基本表的访问计划生成阶段,扫描类的Hint并未实际起作用(只是对索引做过删除处理)。例如,即使指定了IndexScan(t1 t1_i_a),但外部的GUC变量enable_indexscan被设置为了off,在这里也只会看到一个表扫描(SeqScan)的查询计划。因此这里需要重新设置好GUC变量(例如如果遇到IndexScan Hint,需要把GUC变量enable_indexscan重置为on),再做一遍访问计划。由于基本表一般数量较少,访问计划也只需再生成一次,所以此步开销是可接受的;

  2. 调用pg_hint_plan_standard_join_search生成连接的计划。这里是应用连接方法和连接顺序Hint的地方。要想改变连接方法或顺序,需要进一步修改优化器的整个逻辑,但优化器没那么多的预定义钩子可用了,采用函数钩子的方法不可行。于是,插件便“自备”了优化器的主流程代码(其实是从同版本的PG里面拷贝出来的),见插件代码中的core.c和make_join_rel.c两个文件。里面很多地方是被插件修改过的。其中核心的是修改对add_paths_to_joinrel的调用,使优化器实际调用add_paths_to_joinrel_wrapper。这个函数是用于为输入的两张表(可能是连接生成的中间表),生成一个连接计划。可以看到add_paths_to_joinrel_wrapper会先去查找有没有对应的Hint,如果有就直接利用,并舍弃掉不符合Hint的连接方法和顺序(这是连接顺序Hint其作用的地方)。

可以看到,此插件的实现并不复杂,它巧妙利用了优化器优化流程中的关键点,来应用Hint,达到固定查询计划的目的。

性能测试

从内核实现可以看出,指定Hint后会带来如下开销:基本表的访问路径要生成两次;每次连接两个中间表时,要检查是否有对应的Hint;很多地方需要反复更新GUC变量来影响计划生成。当然,由于直接指定了表的连接方法、顺序等,减少了生成的中间计划,这一点又节省了很多开销。所以,对使用Hint后的编译时间是否比原来长,不能一概而论。下面我们对Hint造成的编译开销做一下粗略测试。测试用例如下:

\timing

DO $$DECLARE count int;
BEGIN
    count := 1;
    LOOP
        count := count + 1;

        begin

            EXECUTE 'explain select * from t1,t2,t3,t4,t5,t6,t7,t8 where t1.a=t2.b and t2.a=t3.b and t3.a=t4.b and t4.a=t5.b and t5.a=t6.b and t6.a=t7.b and t7.a=t8.b';

            IF count > 10000 THEN
                EXIT;
            END IF;
        exception when others then

        end;
    END LOOP;

END$$;


DO $$DECLARE count int;
BEGIN
    count := 1;
    LOOP
        count := count + 1;

        begin

            EXECUTE '/*+  IndexScan(t1 t1_i_a) IndexScan(t2 t2_i_a) IndexScan(t3 t3_i_a) IndexScan(t4 t4_i_a) IndexScan(t5 t5_i_a) IndexScan(t6 t6_i_a) IndexScan(t7 t7_i_a) IndexScan(t8 t8_i_a)  Leading ( t1  t2  t3  t4  t5  t6  t7  t8 )  */ explain select * from t1,t2,t3,t4,t5,t6,t7,t8 where t1.a=t2.b and t2.a=t3.b and t3.a=t4.b and t4.a=t5.b and t5.a=t6.b and t6.a=t7.b and t7.a=t8.b' ;

            IF count > 10000 THEN
                EXIT;
            END IF;
        exception when others then

        end;
    END LOOP;

END$$;

这里我们使用了8张表,每张表都只有a、b两个int字段。用两个DO语句,每个都执行同一SQL语句10000次。一个DO语句是不带Hint的,另一个带了较复杂的Hint。测试结果,不带Hint的执行耗时17秒左右,带Hint的14秒左右。即带Hint的反而编译时间更短(注意这里只执行了explain,为真正执行SQL语句)。

目录
相关文章
|
7月前
|
SQL 关系型数据库 MySQL
OBCP第四章 SQL调优-Hint
OBCP第四章 SQL调优-Hint
200 0
|
关系型数据库 索引
MySQL · 源码分析 · 聚合函数(Aggregate Function)的实现过程
--- title: MySQL · 源码分析 · 聚合函数(Aggregate Function)的实现过程 author: 道客 --- ## 总览 聚合函数(Aggregate Function)顾名思义,就是将一组数据进行统一计算,常常用于分析型数据库中,当然在应用中是非常重要不可或缺的函数计算方式。比如我们常见的COUNT/AVG/SUM/MIN/MAX等等。本文主要分析下
1814 0
|
关系型数据库 PostgreSQL
PgSQL · 新特征 · PG11并行Hash Join介绍
关键字 Parallelized, Parallel-aware hash joins 摘要 本文将介绍一下PostgreSQL 11 beta 1 新增的全并行Hash join特征。 将给读者介绍一下postgreSQL并行的设计与实现,并分析一下PostgreSQL的全并行hash join的设计与实现细节。
1904 0
|
关系型数据库 PostgreSQL 存储
|
SQL 关系型数据库 数据库
|
关系型数据库 测试技术 数据库
PgSQL · 内核优化 · Hybrid DB for PG 赋能向量化执行和查询子树封装
背景 Hybrid DB for postgresql简介: 随着大数据时代的不断演进, 用户对于数据的分析能力的需要提出了越来越高的要求。 Hybrid DB for postgres(本文后续将会使用HDBP来代表)是一款基于Greenplum开源项目的分析型数据库。
2035 0
|
SQL 关系型数据库 索引
PgSQL · 源码分析 · PG 优化器中的pathkey与索引在排序时的使用
概要 SQL在PostgreSQL中的处理,是类似于流水线方式的处理,先后由: 词法、语法解析,生成解析树后,将其交给语义解析 语义解析,生成查询树,将其交给Planner Planner根据查询树,生成执行计划,交给执行器 执行器执行完成后返回结果 数据库优化器在生成执行计划的时候,优化器会考虑是否需要使用索引,而使用了索引之后,则会考虑如何利用索引已经排过序的特点,来优化相关的排序,比如ORDER BY / GROUP BY等。
1655 0
|
算法 关系型数据库 索引
PgSQL · 源码分析 · PG优化器物理查询优化
在之前的一篇月报中,我们已经简单地分析过PG的优化器(PgSQL · 源码分析 · PG优化器浅析),着重分析了SQL逻辑优化,也就是尽量对SQL进行等价或者推倒变换,以达到更有效率的执行计划。本次月报将会深入分析PG优化器原理,着重物理查询优化,包括表的扫描方式选择、多表组合方式、多表组合顺序等。 表扫描方式 表扫描方式主要包含顺序扫描、索引扫描以及Tid扫描等方式,不同的扫描方式 Se
2684 0
|
SQL 关系型数据库 数据库
PgSQL · 源码分析 · PG优化器浅析
在使用PostgreSQL数据库过程中,对SQL调优最常用的手段是使用explain查看执行计划,很多时候我们只关注了执行计划的结果而未深入了解执行计划是如何生成的。优化器作为数据库核心功能之一,也是数据库的“大脑”,理解优化器将有助于我们更好地优化SQL,下面将会为大家解开PostgreSQL优化器神秘的面纱。 SQL执行过程 在PG数据库中,对于DDL语句无需进行优化,到utility
2286 0