PgSQL · 源码分析 · PG优化器物理查询优化

本文涉及的产品
云数据库 RDS SQL Server,独享型 2核4GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: 在之前的一篇月报中,我们已经简单地分析过PG的优化器(PgSQL · 源码分析 · PG优化器浅析),着重分析了SQL逻辑优化,也就是尽量对SQL进行等价或者推倒变换,以达到更有效率的执行计划。本次月报将会深入分析PG优化器原理,着重物理查询优化,包括表的扫描方式选择、多表组合方式、多表组合顺序等。表扫描方式表扫描方式主要包含顺序扫描、索引扫描以及Tid扫描等方式,不同的扫描方式Se
+关注继续查看

在之前的一篇月报中,我们已经简单地分析过PG的优化器(PgSQL · 源码分析 · PG优化器浅析),着重分析了SQL逻辑优化,也就是尽量对SQL进行等价或者推倒变换,以达到更有效率的执行计划。本次月报将会深入分析PG优化器原理,着重物理查询优化,包括表的扫描方式选择、多表组合方式、多表组合顺序等。

表扫描方式

表扫描方式主要包含顺序扫描、索引扫描以及Tid扫描等方式,不同的扫描方式

  • Seq scan,顺序扫描物理数据页
postgres=> explain select * from t1 ;
                     QUERY PLAN
-----------------------------------------------------
 Seq Scan on t1  (cost=0.00..14.52 rows=952 width=8)
  • Index scan,先通过索引值获得物理数据的位置,再到物理页读取
postgres=> explain select * from t1 where a1 = 10;
                             QUERY PLAN
--------------------------------------------------------------------
 Index Scan using t1_a1_key on t1  (cost=0.28..8.29 rows=1 width=8)
   Index Cond: (a1 = 10)
  • Tid scan,通过page号和item号直接定位到物理数据
postgres=> explain select * from t1 where ctid='(1,10)';
                    QUERY PLAN
--------------------------------------------------
 Tid Scan on t1  (cost=0.00..4.01 rows=1 width=8)
   TID Cond: (ctid = '(1,10)'::tid)

选择度计算

  • 全表扫描选择度计算

全表扫描时每条记录都会返回,所以选择度为1,所以rows=10000

EXPLAIN SELECT * FROM tenk1;

                         QUERY PLAN
-------------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..458.00 rows=10000 width=244)


 SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 relpages | reltuples
----------+-----------
      358 |     10000
  • 整型大于或者小于选择度计算
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

                                   QUERY PLAN
--------------------------------------------------------------------------------
 Bitmap Heap Scan on tenk1  (cost=24.06..394.64 rows=1007 width=244)
   Recheck Cond: (unique1 < 1000)
   ->  Bitmap Index Scan on tenk1_unique1  (cost=0.00..23.80 rows=1007 width=0)
         Index Cond: (unique1 < 1000)

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='unique1';

                   histogram_bounds
------------------------------------------------------
 {0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}
selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max - bucket[2].min))/num_buckets
            = (1 + (1000 - 993)/(1997 - 993))/10
            = 0.100697
rows = rel_cardinality * selectivity
     = 10000 * 0.100697
     = 1007  (rounding off)
  • 字符串等值选择度计算
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'CRAAAA';

                        QUERY PLAN
----------------------------------------------------------
 Seq Scan on tenk1  (cost=0.00..483.00 rows=30 width=244)
   Filter: (stringu1 = 'CRAAAA'::name)
SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';
null_frac         | 0
n_distinct        | 676
most_common_vals|{EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}
selectivity = mcf[3]
            = 0.003
rows = 10000 * 0.003
     = 30

备注:如果值不在most_common_vals里面,计算公式为:

selectivity = (1 - sum(mvf))/(num_distinct - num_mcv)
  • cost计算

代价模型:总代价=CPU代价+IO代价+启动代价

postgres=> explain select * from t1 where a1 > 10;
                     QUERY PLAN
-----------------------------------------------------
 Seq Scan on t1  (cost=0.00..16.90 rows=942 width=8)
   Filter: (a1 > 10)
(2 rows)
其中:
postgres=> select relpages, reltuples from pg_class where relname = 't1';
 relpages | reltuples
----------+-----------
        5 |       952
(1 row)
cpu_operator_cost=0.0025
cpu_tuple_cost=0.01
seq_page_cost=1
random_page_cost=4

总cost = cpu_tuple_cost * 952 + seq_page_cost * 5 + cpu_operator_cost * 952
= 16.90
其他扫描方式cost计算可以参考如下函数:

postgres=> select amcostestimate,amname from pg_am ;
  amcostestimate  | amname
------------------+--------
 btcostestimate   | btree
 hashcostestimate | hash
 gistcostestimate | gist
 gincostestimate  | gin
 spgcostestimate  | spgist
(5 rows)

表组合方式

  • Nest Loop

screenshot.png

SELECT  * FROM     t1 L, t2 R WHERE  L.id=R.id

假设:

M = 20000 pages in L, pL = 40 rows per page,
N = 400 pages in R, pR = 20 rows per page.

select relpages, reltuples from pg_class where relname=‘t1’

L和R进行join

for l in L do
  for r in R do
    if rid == lid  then ret += (r, s)

对于外表L每一个元组扫描内表R所有的元组
总IO代价: M + (pL * M) * N = 20000 + (4020000)400
= 320020000

  • MergeJoin

screenshot.png

主要分为3步:

(1) Sort L on lid 代价MlogM

(2) Sort R on rid 代价NlogN

(3) Merge the sorted L and R on lid and rid 代价M+N

  • HashJoin

使用HashJoin的前提是其中假设一个表可以完全放在内存中,实际过程中可能统计信息有偏差,优化器认为一个表可以放到内存中,事实上数据在内存中放不下,需要使用临时文件,这样会降低性能。

screenshot.png

表的组合顺序

不同的组合顺序将会产生不同的代价,想要获得最佳的组合顺序,如果枚举所有组合顺序,那么将会有N!的排列组合,计算量对于优化器来说难以承受。PG优化器使用两种算法计算更优的组合顺序,动态规划和遗传算法。对于连接比较少的情况使用动态规划,否则使用遗传算法。

  • 动态规划求解过程

PG优化器主要考虑将执行计划树生成以下三种形式:

screenshot.png

动态规划的思想可以参考百度百科动态规划,主要将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。具体应用在表组合顺序上,则是先考虑单表最优访问访问,然后考虑两种组合,再考虑多表组合,最终得到更优的解。

screenshot.png

目录
相关文章
|
29天前
|
API Python
MindOpt V1.0优化种植计划问题,新的建模方法
种植计划是指农业生产中针对不同农作物的种植时间、面积和种植方式等方面的规划安排。根据具体情况进行合理的规划和安排,以实现农作物的高产、优质和可持续发展。
MindOpt V1.0优化种植计划问题,新的建模方法
|
5月前
|
达摩院 供应链 JavaScript
网络流:优化仓储物流调度问题-达摩院MindOpt
仓储物流调度是指在物流供应链中,对仓储和运输(运输路线、成本)进行协调和安排的过程。主要包含物流计划、运输调度、运发管理、库存管理等重要环节。随着网络、电商行业的迅速发展,仓储物流调度对于企业来说也非常重要,优秀的调度方案可以帮助降低库存成本、物流配送的效率、成本等等等,从而给企业带来降本增效。
网络流:优化仓储物流调度问题-达摩院MindOpt
|
5月前
|
达摩院 调度
使用达摩院MindOpt优化交通调度_最大化通行量—线性规划问题
在数学规划中,网络流问题是指一类基于网络模型的流量分配问题。网络流问题的目标是在网络中分配资源,使得网络的流量满足一定的限制条件,并且使得某些目标函数最小或最大化。网络流问题通常涉及一个有向图,图中每个节点表示一个资源,每条边表示资源之间的关系。边上有一个容量值,表示该边上最多可以流动的资源数量。流量从源节点开始流出,经过一系列中间节点,最终到达汇节点。在这个过程中,需要遵守一定的流量守恒和容量限制条件。
|
5月前
|
数据可视化
MindOpt优化如何分散化风险并实现收益与风险最优配比问题
资产配置,投资组合是指通过分散投资资金的方式来规避投资过程中的风险。在实际的投资过程中,如何决定投资哪些产品来实现收益最大化和风险最小化是一个关键的问题。
MindOpt优化如何分散化风险并实现收益与风险最优配比问题
|
7月前
|
机器学习/深度学习 人工智能 达摩院
MindOpt——优化虚拟电厂智能调度问题(二)
智慧楼宇调度,是在保证社区负荷需求的情况下,通过储能设备的指令控制,以用电经济性、环保性和对电网稳定性为综合目标的一种调度场景。
MindOpt——优化虚拟电厂智能调度问题(二)
|
机器学习/深度学习 SQL 算法
【DB吐槽大会】第58期 - PG 复杂JOIN优化器有巨大提升空间
大家好,这里是DB吐槽大会,第58期 - PG 复杂JOIN优化器有巨大提升空间
|
SQL 关系型数据库 索引
PgSQL · 源码分析 · PG 优化器中的pathkey与索引在排序时的使用
概要 SQL在PostgreSQL中的处理,是类似于流水线方式的处理,先后由: 词法、语法解析,生成解析树后,将其交给语义解析 语义解析,生成查询树,将其交给Planner Planner根据查询树,生成执行计划,交给执行器 执行器执行完成后返回结果 数据库优化器在生成执行计划的时候,优化器会考虑是否需要使用索引,而使用了索引之后,则会考虑如何利用索引已经排过序的特点,来优化相关的排序,比如ORDER BY / GROUP BY等。
1638 0
|
SQL 关系型数据库 数据库
PgSQL · 源码分析 · PG优化器浅析
在使用PostgreSQL数据库过程中,对SQL调优最常用的手段是使用explain查看执行计划,很多时候我们只关注了执行计划的结果而未深入了解执行计划是如何生成的。优化器作为数据库核心功能之一,也是数据库的“大脑”,理解优化器将有助于我们更好地优化SQL,下面将会为大家解开PostgreSQL优化器神秘的面纱。 SQL执行过程 在PG数据库中,对于DDL语句无需进行优化,到utility
2213 0
|
SQL 关系型数据库 Java
关键时刻HINT出彩 - PG优化器的参数优化、执行计划固化CASE
背景 有过数据库使用经验的童鞋可曾遇到过SQL执行计划不准确,或者SQL执行计划抖动的问题。 PostgreSQL的执行计划与大多数的企业数据库是一样的,都是基于成本优化。 基于成本优化的优化器,在算法靠谱,统计信息准确的前提下,通常得到的执行计划是比较准确的。 那么什么时候执行
6536 0
|
SQL 关系型数据库 数据库
PgSQL · 源码分析 · 优化器逻辑推理
背景知识 数据库优化器需要具备逻辑推理能力,而且越强越好,为什么呢? 举一些例子, 通过已知的一个人讲的是真话,推理另一个人讲的一定是真话或一定是假话。 例子1: 假设预先提供了 a > 10 是真话 可以推理出 a < 1 一定是假话 例子2: 假设预先提供了 a > 10 是真话
1313 0
相关产品
云数据库 RDS MySQL 版
云原生数据库 PolarDB
推荐文章
更多