MySQL内核月报 2015.03-MySQL · 优化限制· MySQL index_condition_pushdown

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介:

背景

MySQL 5.6 开始支持index_condition_pushdown特性,即server层把可以在index进行filter的谓词传递给引擎层完成过滤,然后结果返回到server。

工作方式

下面看一下InnoDB的处理方式:

通过设置set global optimizer_switch= "index_condition_pushdown=ON"来启用这个特性。


例如:

 
 

1. 评估

在执行计划评估阶段,通过push_index_cond函数把index filter谓词传递给引擎handler。

2. 执行

InnoDB通过row_search_for_mysql获取每行记录的时候,使用innobase_index_cond函数来check index filter谓词条件是否成立。通过这种方式来完成index上的filter,整个过程并不复杂。


收益和限制

下面来看一下index_condition_pushdown的收益和限制:

收益: index_condition_pushdown所带来的收益可以从三个方面来看:

1. 数据copy

减少了InnoDB层返回给server层的数据量,减少了数据copy。

2. 随机读取

对于二级索引的扫描和过滤,减少了回primary key上进行随机读取的次数

3. 记录锁

记录锁是在InnoDB层完成的,比如如果是select for update语句,就会发现index_condition_pushdown会大大减少记录锁的个数。


限制: 目前index_condition_pushdown还有诸多的限制:

1. 索引类型

如果索引类型是primary key,就不会采用,因为index_condition_pushdown最大的好处是减少回表的随机IO,所以如果使用的index是PK,那么收益就大大减少,不过MySQL官方也在从新评估是否采用,见WL#6061。

2. 性能衰减

如果在primary key上面使用, 或者index filter谓词并不能有效过滤记录的时候,会发现sysbench的测试性能相比较关闭ICP的方式略低。可以参考http://s.petrunia.net/blog/?p=101的讨论。

3. SQL类型

1. 不支持多表update和delete语句,因为select和update会共用handler,而一个是一致性读,一个是当前读,同样的filter都apply的话,update会找不到记录。
2. 如果JOIN是CONST 或者 SYSTEM,不能使用。 因为CONST和SYSTEM做了特别优化,只执行一次,做了缓存,而应用filter的话,会产生数据一致性问题。


索引设计的原则

除了MySQL提供的这些新特性以外,DBA或者开发在设计index的时候,应该遵循的一些原则:

1. 查询谓词都能够通过index进行扫描
2. 排序谓词都能够利用index的有序性
3. index包含了查询所需要的所有字段


这就是传说中的Three-star index。

可以参考《Wiley,.Relational.Database.Index.Design.and.the.Optimizers》

MySQL的index_condition_pushdown,前进了一大步,不过相比较Oracle的index扫描方式,还有空间。比如oracle的index扫描支持的index skip scan方式。


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
11 3
|
5天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
22 1
|
12天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
33 5
|
6天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
37 0
|
7天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
34 0
|
25天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
103 6
|
23天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
56 3
Mysql(4)—数据库索引
|
25天前
|
SQL Ubuntu 关系型数据库
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
本文为MySQL学习笔记,介绍了数据库的基本概念,包括行、列、主键等,并解释了C/S和B/S架构以及SQL语言的分类。接着,指导如何在Windows和Ubuntu系统上安装MySQL,并提供了启动、停止和重启服务的命令。文章还涵盖了Navicat的使用,包括安装、登录和新建表格等步骤。最后,介绍了MySQL中的数据类型和字段约束,如主键、外键、非空和唯一等。
62 3
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
|
8天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
45 2
|
11天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
52 4

相关产品

  • 云数据库 RDS MySQL 版