MySQL查询优化之explain的深入解析

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

在分析查询性能时,考虑EXPLAIN关键字同样很管用。EXPLAIN关键字一般放在SELECT查询语句的前面,用于描述MySQL如何执行查询操作、以及MySQL成功返回结果集需要执行的行数。explain 可以帮助我们分析 select 语句,让我们知道查询效率低下的原因,从而改进我们查询,让查询优化器能够更好的工作。

一、MySQL 查询优化器是如何工作的
MySQL 查询优化器有几个目标,但是其中最主要的目标是尽可能地使用索引,并且使用最严格的索引来消除尽可能多的数据行。最终目标是提交 SELECT 语句查找数据行,而不是排除数据行。优化器试图排除数据行的原因在于它排除数据行的速度越快,那么找到与条件匹配的数据行也就越快。如果能够首先进行最严格的测试,查询就可以执行地更快。
EXPLAIN 的每个输出行提供一个表的相关信息,并且每个行包括下面的列: 

说明

id

MySQL Query  Optimizer 选定的执行计划中查询的序列号。表示查询中执行 select 子句或操作表的顺序,id 值越大优先级越高,越先被执行。id 相同,执行顺序由上至下。

 

select_type 查询类型

说明

SIMPLE

简单的 select 查询,不使用 union 及子查询

PRIMARY

最外层的 select 查询

UNION

UNION 中的第二个或随后的 select 查询,依赖于外部查询的结果集

DEPENDENT UNION

UNION 中的第二个或随后的 select 查询,赖于外部查询的结果集

SUBQUERY

子查询中的第一个 select 查询,不依赖于外部查询的结果集

DEPENDENT  SUBQUERY

子查询中的第一个 select 查询,依赖于外部查询的结果集

DERIVED

用于 from 子句里有子查询的情况。 MySQL 递归执行这些子查询把结果放在临时表里。

UNCACHEABLE  SUBQUERY

结果集不能被缓存的子查询,必须重新为外层查询的每一行进行评估。

UNCACHEABLE  UNION

UNION 中的第二个或随后的 select 查询,于不可缓存的子查询

 

说明

table

输出行所引用的表

 

type 重要的项,显示连接使用的类型,按最优到最差的类型排序

说明

system

表仅有一行(=系统表)。这是 const 连接类型的一个特例。

const

const 用于用常数值比较 PRIMARY KEY 时。当查询的表仅有一行时,使用 System

eq_ref

const 用于用常数值比较 PRIMARY KEY 时。当查询的表仅有一行时,使用 System

ref

连接不能基于关键字选择单个行,可能查找到多个符合条件的行。叫做 ref 是因为索引要跟某个参考值相比较。这个参考值或者是一个常数,或者是来自一个表里的多表查询的结果值。

ref_or_null

如同 ref, 但是 MySQL 必须在初次查找的结果里找出 null 条目,然后进行二次查找。

index_merge

说明索引合并优化被使用了。

unique_subquery

在某些 IN 查询中使用此种类型,而不是常规的 ref:value IN (SELECT primary_key FROM single_table  WHERE some_expr)

index_subquery

 IN 使 ,  unique_subquery 类似,但是查询的是非唯一性索引: value IN  (SELECT key_column FROM single_table WHERE some_expr)

range

只检索给定范围的行,使用一个索引来选择行。key 列显示使用了哪个索引。当使用= <>>>=<<=IS NULL<=>BETWEEN 或者 IN 操作符,用常量比较关键字列时,以使用range

index

全表扫描,只是扫描表的时候按照索引次序进行而不是行。主要优点就是避免了排序但是开销仍然非常大。

all

最坏的情况,从头到尾全表扫描。

 

说明

possible_keys

指出 MySQL 能在该表中使用哪些索引有助于查询。如果为空,说明没有可用的索引。

 

说明

key

MySQL 实际从 possible_key 选择使用的索引。如果为 NULL,则没有使用索引。很少的情况,MYSQL 会选择优化不足的索引。这种情况下,可以在 SELECT 语句中使用 USE INDEX  (indexname)来强制使用一个索引或者用 IGNORE INDEX(indexname)来强制 MYSQL 忽略索引

 

说明

key_len

使用的索引的长度。在不损失精确性的情况,长度越短越好。

 

说明

ref

显示索引的哪一列被使用了

 

说明

rows

MYSQL 认为必须检查的用来返回请求数据的行数

 

说明

rows

MYSQL 认为必须检查的用来返回请求数据的行数

 

extra 中出现以下 2 项意味着 MYSQL 根本不能使用索引,效率会受到重大影响。应尽可能对此进行优化。

extra 

说明

Using filesort

表示 MySQL 会对结果使用一个外部索引排序,而不是从表里按索引次序读到相关内容。可能在内存或者磁盘上进行排序。MySQL 中无法利用索引完成的排序操作称为文件排序

Using temporary

表示 MySQL 在对查询结果排序时使用临时表。常见于排序 order by 和分组查询 group by

下面来举一个例子来说明下 explain 的用法。 
先来一张表:

复制代码代码如下:


CREATE TABLE IF NOT EXISTS `article` (`id` int(10) unsigned NOT NULLAUTO_INCREMENT,
`author_id` int(10) unsigned NOT NULL,
`category_id` int(10) unsigned NOT NULL,
`views` int(10) unsigned NOT NULL,
`comments` int(10) unsigned NOT NULL,
`title` varbinary(255) NOT NULL,
`content` text NOT NULL,
PRIMARY KEY (`id`)
);


再插几条数据:

复制代码代码如下:


INSERT INTO `article`
(`author_id`, `category_id`, `views`, `comments`, `title`, `content`) VALUES
(1, 1, 1, 1, '1', '1'),
(2, 2, 2, 2, '2', '2'),
(1, 1, 3, 3, '3', '3');


需求:
查询 category_id  1  comments 大于 1 的情况下,views 最多的 article_id 
先查查试试看:

复制代码代码如下:


EXPLAIN
SELECT author_id
FROM `article`
WHERE category_id = 1 AND comments > 1
ORDER BY views DESC
LIMIT 1\G


看看部分输出结果

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 3
        Extra: Using where; Using filesort
1 row in set (0.00 sec)


很显然,type  ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。

,那么最简单的解决方案就是加索引了。好,我们来试一试。查询的条件里即 where 之后共使用了category_id,comments,views 三个字段。那么来一个联合索引是最简单的了。

复制代码代码如下:


ALTER TABLE `article` ADD INDEX x ( `category_id` , `comments`, `views` );


结果有了一定好转,但仍然很糟糕:

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: range
possible_keys: x
          key: x
      key_len: 8
          ref: NULL
         rows: 1
        Extra: Using where; Using filesort
1 row in set (0.00 sec)


type 
变成了range,这是可以忍受的。但是 extra 里使用 Using filesort 仍是无法接受的。但是我们已经建立了索引,为啥没用呢?这是因为按照 BTree 索引的工作原理,先排序 category_id,如果遇到相同的 category_id 则再排序 comments,如果遇到相同的 comments 则再排序 views。当 comments 字段在联合索引里处于中间位置时,comments > 1 条件是一个范围值(所谓 range),MySQL 无法利用索引再对后面的 views 部分进行检索, range 类型查询字段后面的索引无效。
那么我们需要抛弃 comments,删除旧索引:

复制代码代码如下:


 DROP INDEX x ON article;


然后建立新索引:

复制代码代码如下:


ALTER TABLE `article` ADD INDEX y ( `category_id` , `views` ) ;


接着再运行查询:

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: article
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: const
         rows: 1
        Extra: Using where
1 row in set (0.00 sec)


可以看到,type 变为了 ref,Extra 中的 Using filesort 也消失了,结果非常理想。
再来看一个多表查询的例子。
首先定义 3个表 class  room

复制代码代码如下:


CREATE TABLE IF NOT EXISTS `class` (
`id` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`id`)
);
CREATE TABLE IF NOT EXISTS `book` (
`bookid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`bookid`)
);
CREATE TABLE IF NOT EXISTS `phone` (
`phoneid` int(10) unsigned NOT NULL AUTO_INCREMENT,
`card` int(10) unsigned NOT NULL,
PRIMARY KEY (`phoneid`)
) engine = innodb;


然后再分别插入大量数据。插入数据的php脚本: 

复制代码代码如下:


<?php
$link =mysql_connect("localhost","root","870516");
mysql_select_db("test",$link);
for($i=0;$i<10000;$i++)
{
    $j   = rand(1,20);
    $sql = " insert into class(card) values({$j})";
    mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
    $j   = rand(1,20);
    $sql = " insert into book(card) values({$j})";
    mysql_query($sql);
}
for($i=0;$i<10000;$i++)
{
    $j   = rand(1,20);
    $sql = " insert into phone(card) values({$j})";
    mysql_query($sql);
}
mysql_query("COMMIT");
?>


然后来看一个左连接查询

复制代码代码如下:


explain select * from class left join book on class.card = book.card\G


分析结果是:

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


显然第二个 ALL 是需要我们进行优化的。
建立个索引试试看:

复制代码代码如下:


ALTER TABLE `book` ADD INDEX y ( `card`);

 

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: test.class.card
         rows: 1000
        Extra: 
2 rows in set (0.00 sec)


可以看到第二行的 type 变为了 ref,rows 也变成了 1741*18,优化比较明显。这是由左连接特性决定的。LEFTJOIN 条件用于确定如何从右表搜索行,左边一定都有,所以右边是我们的关键点,一定需要建立索引。
删除旧索引:

复制代码代码如下:


DROP INDEX y ON book;


建立新索引。

复制代码代码如下:


ALTER TABLE `class` ADD INDEX x ( `card`);


结果

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


基本无变化。
       
然后来看一个右连接查询:

复制代码代码如下:


explain select * from class right join book on class.card = book.card;


分析结果是:

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ref
possible_keys: x
          key: x
      key_len: 4
          ref: test.book.card
         rows: 1000
        Extra: 
2 rows in set (0.00 sec)


优化较明显。这是因为 RIGHT JOIN 条件用于确定如何从左表搜索行,右边一定都有,所以左边是我们的关键点,一定需要建立索引。
删除旧索引:

复制代码代码如下:


DROP INDEX x ON class;


建立新索引。

复制代码代码如下:


ALTER TABLE `book` ADD INDEX y ( `card`);


结果

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


基本无变化。

最后来看看 inner join 的情况:

复制代码代码如下:


explain select * from class inner join book on class.card = book.card;


结果

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ref
possible_keys: x
          key: x
      key_len: 4
          ref: test.book.card
         rows: 1000
        Extra: 
2 rows in set (0.00 sec)


删除旧索引

复制代码代码如下:


DROP INDEX y ON book;


结果

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


建立新索引。

复制代码代码如下:


ALTER TABLE `class` ADD INDEX x ( `card`);


结果

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
2 rows in set (0.00 sec)


综上所述,inner join  left join 差不多,都需要优化右表。而 right join 需要优化左表。

我们再来看看三表查询的例子

添加一个新索引:

复制代码代码如下:


ALTER TABLE `phone` ADD INDEX z ( `card`);
ALTER TABLE `book` ADD INDEX y ( `card`);

 

复制代码代码如下:


explain select * from class left join book on class.card=book.card left joinphone on book.card = phone.card;

 

复制代码代码如下:


*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: class
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 20000
        Extra: 
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: book
         type: ref
possible_keys: y
          key: y
      key_len: 4
          ref: test.class.card
         rows: 1000
        Extra: 
*************************** 3. row ***************************
           id: 1
  select_type: SIMPLE
        table: phone
         type: ref
possible_keys: z
          key: z
      key_len: 4
          ref: test.book.card
         rows: 260
        Extra: Using index
3 rows in set (0.00 sec)


 2 行的 type 都是 ref 且总 rows 优化很好,效果不错。

MySql 
中的explain 语法可以帮助我们改写查询,优化表的结构和索引的设置,从而最大地提高查询效率。当然,在大规模数据量时,索引的建立和维护的代价也是很高的,往往需要较长的时间和较大的空间,如果在不同的列组合上建立索引,空间的开销会更大。因此索引最好设置在需要经常查询的字段中。











本文转自 知止内明 51CTO博客,原文链接:http://blog.51cto.com/357712148/1961315,如需转载请自行联系原作者
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
4天前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
8天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
7天前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
27 3
|
8天前
|
存储 关系型数据库 MySQL
MySQL 字段类型深度解析:VARCHAR(50) 与 VARCHAR(500) 的差异
在MySQL数据库中,`VARCHAR`类型是一种非常灵活的字符串存储类型,它允许存储可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储效率、性能和使用场景上也有所不同。本文将深入探讨这两种字段类型的区别及其对数据库设计的影响。
19 2
|
12天前
|
存储 关系型数据库 MySQL
PHP与MySQL动态网站开发深度解析####
本文作为技术性文章,深入探讨了PHP与MySQL结合在动态网站开发中的应用实践,从环境搭建到具体案例实现,旨在为开发者提供一套详尽的实战指南。不同于常规摘要仅概述内容,本文将以“手把手”的教学方式,引导读者逐步构建一个功能完备的动态网站,涵盖前端用户界面设计、后端逻辑处理及数据库高效管理等关键环节,确保读者能够全面掌握PHP与MySQL在动态网站开发中的精髓。 ####
|
4天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
16 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
67 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
52 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
60 0
|
1月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
80 0

推荐镜像

更多