MYSQL异常处理日志:主从库同步延迟时间过长的分析

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

问题描述:

程序上表现为对 主库 更新操作之后,从 从库 查询数据没发生改变。怀疑是主从库同步延迟导致。上从库查看主从同步状态,发现Seconds_Behind_Master时间长达一千多秒。正常情况下主从库延时个十几秒还可以容忍,一千多秒显然就有问题了么。。。

 

问题分析:

我们在一个MYSQL实例上创建了四五个Database,其中一个Database数据量和压力都比较大,从 从库的processlist可以看到从库在处理日志时经常发生lock的状况,但是lock只是压力大database为何会影响到其他database也延迟呢?

 

原来从库是单线程处理同步日志,也就是说无论多少个database都是通过一个线程去执行更新操作,所以主从库同步延迟的时间不是针对database的,是针对一个MYSQL实例的。

 

 

那么,为何从库在处理日志时会发生lock的状态呢?

 

一般我们都将主从库读写分离,主库负责写操作,从库负责读操作。而一般的web应用读数据的操作要远远大于写数据的量,所以我们在主库上几乎看不到因为更新数据导致的lock。那么从库的lock怎么发生的呢?

 

 

[c-sharp]  view plain copy print ?
  1. 对MyISAM表的读操作(加读锁),不会阻塞其他进程对同一表的读请求,但会阻塞对同一表的写请求。只有当读锁释放后,才会执行其它进程的写操作。  
  2. 对MyISAM表的写操作(加写锁),会阻塞其他进程对同一表的读和写操作,只有当写锁释放后,才会执行其它进程的读写操作。  

 

 

从上面可以看出,我们在select的时候默认是会阻塞写请求的,当一个表数据量到达了千万级别,那么执行一个select很有可能就会变得比较费劲,再加上一定的压力,不断地select操作,虽然读数据不会受到影响,但是却阻塞了从库处理同步日志的操作。长此以往。。。可想而知。。。

 

问题处理:

1.首先一个MYSQL实例不要创建太多database,否则一旦其中一个库压力大经常被锁,会导致所有库同步都延迟,你伤不起啊。。。

2.压力较大的情况下使用几个从库值得考量,如果使用多个从库也是可以适当缓解上面lock的情况发生。 










本文转自 小强测试帮 51CTO博客,原文链接:http://blog.51cto.com/xqtesting/914451,如需转载请自行联系原作者
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
打赏
0
0
0
0
235
分享
相关文章
图解MySQL【日志】——Redo Log
Redo Log(重做日志)是数据库中用于记录数据页修改的物理日志,确保事务的持久性和一致性。其主要作用包括崩溃恢复、提高性能和保证事务一致性。Redo Log 通过先写日志的方式,在内存中缓存修改操作,并在适当时候刷入磁盘,减少随机写入带来的性能损耗。WAL(Write-Ahead Logging)技术的核心思想是先将修改操作记录到日志文件中,再择机写入磁盘,从而实现高效且安全的数据持久化。Redo Log 的持久化过程涉及 Redo Log Buffer 和不同刷盘时机的控制参数(如 `innodb_flush_log_at_trx_commit`),以平衡性能与数据安全性。
39 5
图解MySQL【日志】——Redo Log
ELK实现nginx、mysql、http的日志可视化实验
通过本文的步骤,你可以成功配置ELK(Elasticsearch, Logstash, Kibana)来实现nginx、mysql和http日志的可视化。通过Kibana,你可以直观地查看和分析日志数据,从而更好地监控和管理系统。希望这些步骤能帮助你在实际项目中有效地利用ELK来处理日志数据。
187 90
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
134 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
图解MySQL【日志】——两阶段提交
两阶段提交是为了解决Redo Log和Binlog日志在事务提交时可能出现的半成功状态,确保两者的一致性。它分为准备阶段和提交阶段,通过协调者和参与者协作完成。准备阶段中,协调者向所有参与者发送准备请求,参与者执行事务并回复是否同意提交;提交阶段中,若所有参与者同意,则协调者发送提交请求,否则发送回滚请求。MySQL通过这种方式保证了分布式事务的一致性,并引入组提交机制减少磁盘I/O次数,提升性能。
53 4
图解MySQL【日志】——两阶段提交
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
让跨 project 联查更轻松,SLS StoreView 查询和分析实践
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
134 22
MySQL日志
本文介绍了MySQL中三个重要的日志:binlog、redolog和undolog。binlog记录数据库更改操作,支持数据恢复、复制和审计;redolog保证事务的原子性和持久性,实现crash-safe;undolog用于事务回滚及MVCC的实现。每个日志都有其独特的作用和应用场景,确保数据库的稳定性和数据一致性。
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
49 3

热门文章

最新文章